Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 87(4): 100243, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38360407

RESUMO

The U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) conducts surveillance of metallic elements in U.S. meat, poultry, and Siluriformes fish samples collected immediately postmortem as part of its National Residue Program (NRP). From 2017 to 2022, 13,966 samples were analyzed under the NRP. The Federal Emergency Response Network (FERN) Cooperative Agreement Program (CAP) tests meat, poultry, and Siluriformes fish products collected at retail in the United States for metals. From 2018 to 2022, 2,902 samples were analyzed by FERN CAP laboratories. Meat and poultry samples collected by FSIS show that most metals were not detected at all or were detected infrequently. Meat is a rich source of iron and zinc, and iron was detected in 22% (1,255/5,623) and zinc was detected in 48% (2,742/5,676) of meat and poultry samples, respectively. The percentage of samples testing positive for manganese, molybdenum, lead, and cadmium were higher in the FERN CAP retail samples than in FSIS samples. Expected human exposure from average levels of lead and cadmium found in meat and poultry was compared to toxicological reference values and was not found to exceed these values. Detections of arsenic and mercury were found more often in Siluriformes fish samples (2017-2022) than in terrestrial animals. Trace amounts of arsenic and mercury were detected in 8% and 4% of Siluriformes samples, respectively, but were not detected at levels that raise concern. On the whole, both the FSIS and FERN CAP datasets provide reassuring evidence of the safety of the FSIS-regulated food supply with regard to the studied elements.


Assuntos
Arsênio , Peixes-Gato , Mercúrio , Animais , Humanos , Estados Unidos , Aves Domésticas , Produtos Avícolas/análise , Cádmio/análise , Contaminação de Alimentos/análise , Carne/análise , Metais , Zinco , Ferro
2.
Artigo em Inglês | MEDLINE | ID: mdl-38270906

RESUMO

Daily dietary exposure estimates from beef, pork, chicken, turkey and siluriform fish were calculated using toxic equivalency (TEQ) data from the U.S. Department of Agriculture's survey of dioxins and dioxin-like compounds (DLCs) in the domestic meat supply and consumption data. Exposure estimates for the whole population and age groups were based on mean consumption of a commodity and mean or 90th percentile TEQ dioxin levels from the survey. Ratios of the exposure estimates to the U.S. EPA oral reference dose (RfD) of 0.7 pg TEQ/kg bw/day were calculated to determine if domestic meat might contribute materially to consumer exposure. In general, normal consumption of lean beef, pork, chicken and turkey will not cause exposures exceeding the RfD. Non-lean meats will have higher dioxin levels as dioxins accumulate in fat, therefore consumption of non-lean meat might cause higher exposure than compared to lean meat. However, on a mean basis, none of the exposure estimates for non-lean beef, pork, chicken or turkey exceeded the RfD for any of the age groups. For some age groups, especially toddlers, there are commodities such as non-lean beef in the 90th percentile of dioxin TEQs and siluriform fish that might exceed the RfD on occasion.


Assuntos
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animais , Bovinos , Humanos , Dibenzodioxinas Policloradas/análise , Bifenilos Policlorados/análise , Aves Domésticas , Dioxinas/análise , Exposição Dietética , Dibenzofuranos Policlorados/análise , Contaminação de Alimentos/análise , Carne/análise , Galinhas , Peixes
3.
Artigo em Inglês | MEDLINE | ID: mdl-35113765

RESUMO

The U.S. Department of Agriculture (USDA) conducted a survey of domestic animal products including beef fat, pork fat, chicken fat, turkey fat, dairy cow fat, and siluriform fish muscle (i.e. catfish) to determine the current residue levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and non-ortho-polychlorinated biphenyls (no-PCBs). The following types of fat samples were analysed: beef from heifers and steers (referred to as "beef"), pork, chicken, turkey, dairy cow (referred to as "dairy cow"), and siluriform fish muscle, which includes catfish. The survey is conducted every 5 years. Fat samples for each slaughter class and siluriform fillets were collected from U.S. federally inspected slaughter facilities, processed, and analysed for 17 PCDD/Fs and 3 no-PCBs. Toxic equivalency concentrations were calculated using 2005 toxic equivalency factors and summed (sum-TEQ) for all slaughter classes. The sum-TEQs ranged from non-detect (nd) to 16.5 pg TEQ/g lipid. The median sum-TEQs, when nd = ½ LOD, for beef, pork, chicken, turkey, dairy cow, and siluriform fish were 0.48, 0.08, 0.07, 0.21, 0.38, and 0.62 pg TEQ/g lipid (wet weight for siluriform fish), respectively. A comparison of the current and previous surveys typically depicts a significant declining trend depending on the slaughter class (such as chicken and turkey), however, beef and pork fat median values slightly increased and decreased, respectively, but neither were significant compared to the previous survey. The congener patterns for some high concentration beef and pork fat samples suggested that pentachlorophenol treated wood continues to be a likely on-farm dioxin exposure source.


Assuntos
Benzofuranos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animais , Benzofuranos/análise , Bovinos , Galinhas , Dibenzofuranos/análise , Dibenzofuranos Policlorados/análise , Feminino , Peixes , Contaminação de Alimentos/análise , Lipídeos , Carne/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Aves Domésticas , Perus
4.
J Food Prot ; 83(8): 1368-1373, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294171

RESUMO

ABSTRACT: Semicarbazide (SEM) is the U.S. Food and Drug Administration's official marker for nitrofurazone use in food animals. The U.S. Department of Agriculture Food Safety and Inspection Service conducted a study to evaluate the source of SEM that was identified by a U.S. trading partner in a subset of chicken samples presented for inspection, even though nitrofurazone has been banned from use in U.S. food-producing animals since 2002. The study design included analyses to detect and quantify total and bound SEM in chicken collected from the eight U.S. establishments that were associated with the reported detection of SEM. Samples were collected immediately following evisceration, chilling, and cutting carcass into parts (cut-up). Although antimicrobial interventions (processes to reduce pathogen concentrations) are typically used at all three of these processing steps, the product contact time during chilling is significantly longer (hours versus seconds) than during evisceration and cut-up. In addition, parts were analyzed after 0, 10, 20, and 30 days of frozen storage. No postevisceration samples tested positive for SEM; however, most samples collected postchilling and after cut-up tested positive. The absence of SEM in postevisceration samples and detection in the subsequent postchilling samples and after the cut-up samples suggest that the detection of SEM in the sampled products is not indicative of preharvest nitrofurazone use and may be a result of postharvest processing in these establishments.


Assuntos
Anti-Infecciosos , Nitrofurazona , Animais , Galinhas , Contaminação de Alimentos/análise , Nitrofurazona/análise , Semicarbazidas/análise
5.
Ecancermedicalscience ; 8: 459, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25228915

RESUMO

Prostate cancer (CaP) is the most frequently diagnosed cancer in US men, with an estimated 236,590 new cases and 29,720 deaths in 2013. There exists the need to identify biomarkers/therapeutic targets for the early/companion diagnosis and development of novel therapies against the recalcitrant disease. Mutation and overexpression-induced abnormal activities of polyisoprenylated proteins have been implicated in CaP. Polyisoprenylated methylated protein methyl esterase (PMPMEase) catalyses the only reversible and terminal reaction of the polyisoprenylation pathway and may promote the effects of G proteins on cell viability. In this review, the potential role of PMPMEase to serve as a new drug target for androgen-insensitive CaP was determined. Specific PMPMEase activities were found to be 3.5- and 4.5-fold higher in androgen-sensitive 22Rv1 and androgen-dependent LNCaP and 1.5- and 9.8-fold higher in castration-resistant DU 145 and PC-3 CaP cells compared to normal WPE1-NA22 prostate cells. The PMPMEase inhibitor, L-28, induced apoptosis with EC50 values ranging from 1.8 to 4.6 µM. The PMPMEase activity in the cells following treatment with L-28 followed a similar profile, with IC50 ranging from 2.3 to 130 µM. L-28 disrupted F-actin filament organisation at 5 µM and inhibited cell migration 4-fold at 2 µM. Analysis of a CaP tissue microarray for PMPMEase expression revealed intermediate, strong, and very strong staining in 94.5% of the 92 adenocarcinoma cases compared to trace and weak staining in the normal and normal-adjacent tissue controls. The data are an indication that effective targeting of PMPMEase through the development of more potent agents may lead to the successful treatment of metastatic CaP.

6.
Eur J Med Chem ; 81: 323-33, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24852279

RESUMO

Pancreatic cancer is the most deadly neoplasm with a 5-year survival rate of less than 6%. Over 90% of cases harbor K-Ras mutations, which are the most challenging to treat due to lack of effective therapies. Here, we reveal that polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in 93% of pancreatic ductal adenocarcinoma. We further present polyisoprenylated cysteinyl amide inhibitors (PCAIs) as novel compounds designed with structural elements for optimal in vivo activities and selective disruption of polyisoprenylation-mediated protein functions. The PCAIs inhibited PMPMEase with Ki values ranging from 3.7 to 20 µM. The 48 h EC50 values for pancreatic cancer Mia PaCa-2 and BxPC-3 cell lines were as low as 1.9 µM while salirasib and farnesylthiosalicylamide were ineffective at 20 µM. The PCAIs thus have the potential to serve as effective therapies for pancreatic and other cancers with hyperactive growth signaling pathways mediated by Ras and related G-proteins.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Amidas/química , Amidas/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade
7.
Am J Cancer Res ; 4(2): 116-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24660102

RESUMO

The involvement of hyperactive polyisoprenylated proteins in cancers has stimulated the search for drugs to target and suppress their excessive activities. Polyisoprenylated methylated protein methyl esterase (PMPMEase) inhibition has been shown to modulate polyisoprenylated protein function. For PMPMEase inhibition to be effective against cancers, polyisoprenylated proteins, the signaling pathways they mediate and/or PMPMEase must be overexpressed, hyperactive and be involved in at least some cases of cancer. PMPMEase activity in lung cancer cells and its expression in lung cancer cells and cancer tissues were investigated. PMPMEase was found to be overexpressed and significantly more active in lung cancer A549 and H460 cells than in normal lung fibroblasts. In a tissue microarray study, PMPMEase immunoreactivity was found to be significantly higher in lung cancer tissues compared to the normal controls (p < 0.0001). The mean scores ± SEM were 118.8 ± 7.7 (normal), 232.1 ± 25.1 (small-cell lung carcinomas), 352.1 ± 9.4 (squamous cell carcinomas), 311.7 ± 9.8 (adenocarcinomas), 350.0 ± 24.2 (papillary adenocarcinomas), 334.7 ± 30.1 (adenosquamous carcinomas), 321.9 ± 39.7 (bronchioloalveolar carcinomas), and 331.3 ± 85.0 (large-cell carcinomas). Treatment of lung cancer cells with L-28, a specific PMPMEase inhibitor, resulted in concentration-dependent cell death (EC50 of 8.5 µM for A549 and 2.8 µM for H460 cells). PMPMEase inhibition disrupted actin filament assembly, significantly inhibited cell migration and altered the transcription of cancer-related genes. These results indicate that elevated PMPMEase activity spur cell growth and migration, implying the possible use of PMPMEase as a protein biomarker and drug target for lung cancer.

8.
Biomed Res Int ; 2013: 416534, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936796

RESUMO

Inhibition of PMPMEase, a key enzyme in the polyisoprenylation pathway, induces cancer cell death. In this study, purified PMPMEase was inhibited by the chemopreventive agent, curcumin, with a K(i) of 0.3 µM (IC50 = 12.4 µM). Preincubation of PMPMEase with 1 mM curcumin followed by gel-filtration chromatography resulted in recovery of the enzyme activity, indicative of reversible inhibition. Kinetics analysis with N-para-nitrobenzoyl-S-trans,trans-farnesylcysteine methyl ester substrate yielded K M values of 23.6 ± 2.7 and 85.3 ± 15.3 µM in the absence or presence of 20 µM curcumin, respectively. Treatment of colorectal cancer (Caco2) cells with curcumin resulted in concentration-dependent cell death with an EC50 of 22.0 µg/mL. PMPMEase activity in the curcumin-treated cell lysate followed a similar concentration-dependent profile with IC50 of 22.6 µg/mL. In colorectal cancer tissue microarray studies, PMPMEase immunoreactivity was significantly higher in 88.6% of cases compared to normal colon tissues (P < 0.0001). The mean scores ± SEM were 91.7 ± 11.4 (normal), 75.0 ± 14.4 (normal adjacent), 294.8 ± 7.8 (adenocarcinoma), and 310.0 ± 22.6 (mucinous adenocarcinoma), respectively. PMPMEase overexpression in colorectal cancer and cancer cell death stemming from its inhibition is an indication of its possible role in cancer progression and a target for chemopreventive agents.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Neoplasias Colorretais/enzimologia , Curcumina/administração & dosagem , Prenilação de Proteína/genética , Células CACO-2 , Hidrolases de Éster Carboxílico/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Terapia de Alvo Molecular
9.
Curr Cancer Drug Targets ; 11(6): 752-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21599633

RESUMO

The polyisoprenylation pathway incorporates a reversible step that metabolizes polyisoprenylated methylated proteins from the ester to the carboxylate form. Polyisoprenylated protein methyl transferase (PPMTase) catalyses the esterification whereas polyisoprenylated methylated protein methyl esterase (PMPMEase) hydrolyzes them. Significant changes in the balance between the two enzymes may alter polyisoprenylated protein function possibly resulting in disease. Previous studies show that PMPMEase is the serine hydrolase, Sus scrofa carboxylesterase. Its susceptibility to the nonspecific serine hydrolase inhibitor, phenylmethylsulfonyl fluoride (PMSF) paved the way for its use as a prototypical compound to design and synthesize a series of putative high affinity specific inhibitors of PMPMEase. Pseudo first-order kinetics revealed an over 680-fold increase in k(obs)/[I] values from PMSF (6 M(-1)-1s(-1)), S-phenyl (L-50, 180 M(-1)s(-1)), S-benzyl (L-51, 350 M(-1)s(-1)), S-trans, trans-farnesyl (L-28, 2000 M(-1)s(-1)), to S-trans-geranylated (L-23, 4100 M(-1)s(-1)) 2-thioethanesulfonyl fluorides. C10 S-alkyl substitution revealed a k(obs)/[I] value (1800 M(-1)s(-1)) that was 298 times greater than that for PMSF. The compounds induced the degeneration of human neuroblastoma SH-SY5Y cells with EC(50) values of 49, 130 and >1000 µM for L-28, L-23 and PMSF, respectively. The increased affinity with the polyisoprenyl derivatization is consistent with the observed substrate specificity and the reported hydrophobic nature of the active site. These results suggest that (1) PMPMEase is a key enzyme for polyisoprenylated protein metabolism, (2) regulation of its activity is essential for maintaining normal cell viability, (3) abnormal activities may be involved in degenerative diseases and cancers and (4) its specific inhibitors may be useful in combating cancers.


Assuntos
Proteínas Metiltransferases/antagonistas & inibidores , Proteínas Metiltransferases/metabolismo , Prenilação de Proteína , Ácidos Sulfínicos/farmacologia , Animais , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Catálise , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Fluoreto de Fenilmetilsulfonil/farmacologia , Especificidade por Substrato , Sus scrofa
10.
Eur J Lipid Sci Technol ; 113(11): 1321-1331, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22468134

RESUMO

Polyisoprenylation is a set of secondary modifications involving proteins whose aberrant activities are implicated in cancers and degenerative disorders. The last step of the pathway involves an ester-forming polyisoprenylated protein methyl transferase- and hydrolytic polyisoprenylated methylated protein methyl esterase (PMPMEase)-catalyzed reactions. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been linked with antitumorigeneis and tumorigenesis, respectively. PUFAs are structurally similar to the polyisoprenyl groups and may interfere with polyisoprenylated protein metabolism. It was hypothesized that PUFAs may be more potent inhibitors of PMPMEase than their more polar oxidative metabolites, the prostaglandins. As such, the relative effects of PUFAs and prostaglandins on PMPMEase could explain the association between cyclooxygenase-2 (COX-2) expression in tumors, the chemopreventive effects of the non-steroidal anti-inflammatory (NSAIDs) COX-2 inhibitors and PUFAs. PUFAs such as arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids inhibited PMPMEase activity with Ki values of 0.12 to 3.7 µM. The most potent prostaglandin was 63-fold less potent than AA. The PUFAs were also more effective at inducing neuroblastoma cell death at physiologically equivalent concentrations. The lost PMPMEase activity in AA-treated degenerating cells was restored by incubating the lysates with COX-1 or COX-2. PUFAs may thus be physiological regulators of cell growth and could owe these effects to PMPMEase inhibition.

11.
Open Enzym Inhib J ; 2: 12-27, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20664805

RESUMO

The polyisoprenylation pathway enzymes have been the focus of numerous studies to better understand the roles of polyisoprenylated proteins in eukaryotic cells and to identify novel targets against diseases such as cancer. The final step of the pathway is a reversible reaction catalyzed by isoprenyl carboxylmethyl transferase (icmt) whose products are then hydrolyzed by polyisoprenylated methylated protein methyl esterase (PMPMEase). Unlike the other pathway enzymes, the esterase has received little attention. We recently purified PMPMEase from porcine liver using an S-polyisoprenylated cysteine methyl ester substrate-dependent screening assay. However, no data is available showing its relative interaction with structurally diverse substrates. As such, its role as the putative endogenous PMPMEase has not been demonstrated. A series of substrates with S-alkyl substituents ranging from 2 to 20 carbons, including the two moieties found in polyisoprenylated proteins, were synthesized. Enzyme kinetics analysis revealed a 33-fold increase in affinity (K(M) values) from ethyl- (C-2, 505+/-63 microM), prenyl- (C-5, 294+/-25 microM), trans-geranyl- (C-10, 87+/-12 microM), trans, trans-farnesyl- (C-15, 29+/-2.2 microM) to all trans-geranylgeranyl- (C-20-, 15+/-2.7 microM) based analogs. Comparative molecular field analysis of the data yielded a cross-validated q(2) of 0.863+/-0.365 and a final R(2) of 0.995. Since the substrates with the S-trans, trans-farnesyl and S-all trans-geranylgeranyl moieties that occur in proteins show the highest affinity towards PMPMEase and are not hydrolyzed by the cholinesterases, the results suggest that polyisoprenylated proteins are the endogenous substrates of this esterase. The results suggest design strategies for high affinity and selective inhibitors of PMPMEase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA