Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ayurveda Integr Med ; 13(1): 100374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33250601

RESUMO

The Ministry of AYUSH recommended the use of a decoction of the mixture of Ocimum tenuiflorum, Cinnamomum verum, Piper nigrum, Zingiber officinale, and Vitis vinifera as a preventive measure by boosting the immunity against the severity of infection caused by a novel coronavirus (COVID-19). The present study aimed to identify the probable modulated pathways by the combined action of AYUSH recommended herbal tea and golden milk formulation as an immune booster against COVID-19. Reported phytoconstituents of all the medicinal plants were retrieved from the ChEBI database, and their targets were predicted using DIGEP-Pred. STRING database and Cytoscape were used to predict the protein-protein interaction and construct the network, respectively. Likewise, MolSoft and admet SAR2.0 were used to predict the druglikeness score and ADMET profile of phytoconstituents. The study identified the modulation of HIF-1, p53, PI3K-Akt, MAPK, cAMP, Ras, Wnt, NF-kappa B, IL-17, TNF, and cGMP-PKG signaling pathways to boost the immune system. Further, multiple pathways were also identified which are involved in the regulation of pathogenesis of the multiple infections and non-infectious diseases due to the lower immune system. Results indicated that the recommended herbal formulation not only modulated the pathways involved in boosting the immunity but also modulated the multiple pathways that are contributing to the progression of multiple disease pathogenesis which would add the beneficial effect in the co-morbid patients of hypertension and diabetes. The study provides the scientific documentation of the role of the Ayurvedic formulation to combat COVID-19.

2.
3 Biotech ; 11(3): 119, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33585152

RESUMO

The majority of the bioactives under investigation were predicted to target TNF receptor-associated factor 5 in the Janus kinase/signal transducers and activators of the transcription pathway. Similarly, druglikeness prediction identified vitexilactone to possess the highest druglikeness score, i.e., 0.88. Furthermore, proteins targeted in the Janus kinase/signal transducers and activators of transcription pathway were also predicted to regulate multiple pathways, i.e., ErbB, AGE-RAGE, NF-kappa B, Measles, insulin, mTOR, chemokine, Ras, and pathways associated with infectious and non-infectious pathogenesis, where the immune system is compromised. Similarly, the docking study identified sesaminol 2-O-ß-D-gentiobioside to possess the highest binding affinity with 3CLpro, PLpro, and spike proteins. Furthermore, phylogeny comparison identified the common protein domains with other stains of microbes like murine hepatitis virus strain A59, avian infectious bronchitis virus, and porcine epidemic diarrhea virus CV777.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA