Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466409

RESUMO

Mycotoxins are secondary metabolites produced by several species of fungi, including the Fusarium, Aspergillus, and Penicillium species. Currently, more than 300 structurally diverse mycotoxins are known, including a group called minor mycotoxins, namely enniatins, beauvericin, and fusaproliferin. Beauvericin and enniatins possess a variety of biological activities. Their antimicrobial, antibiotic, or ionoforic activities have been proven and according to various bioassays, they are believed to be toxic. They are mainly found in cereal grains and their products, but they have also been detected in forage feedstuff. Mycotoxins in feedstuffs of livestock animals are of dual concern. First one relates to the safety of animal-derived food. Based on the available data, the carry-over of minor mycotoxins from feed to edible animal tissues is possible. The second concern relates to detrimental effects of mycotoxins on animal health and performance. This review aims to summarize current knowledge on the relation of minor mycotoxins to livestock animals.


Assuntos
Depsipeptídeos/toxicidade , Contaminação de Alimentos/análise , Micotoxinas , Ração Animal/toxicidade , Animais , Grão Comestível/toxicidade , Gado , Terpenos
2.
Front Plant Sci ; 11: 602065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424901

RESUMO

Soil drying combined with nitrogen (N) deficiency poses a grave threat to agricultural crop production. The rate at which nitrate (NO3 -) is taken up depends partly on the uptake and transpiration of water. Rapid changes in nitrate assimilation, in contrast to other N forms, may serve as a component of the plant stress response to drought because nitrate assimilation may lead to changes in xylem pH. The modulation of xylem sap pH may be relevant for stomata regulation via the delivery of abscisic acid (ABA) to guard cells. In several factorial experiments, we investigated the interactions between nitrate and water availability on nitrate fate in the plant, as well as their possible implications for the early drought-stress response. We monitored the short-term response (2-6 days) of nitrate in biomass, transport to shoot and reduction in Pisum sativum, Hordeum vulgare, Vicia faba, and Nicotiana tabacum and correlated this with sap pH and transpiration rates (TRs). Cultivation on inorganic substrate ensured control over nutrient and water supply and prevented nodulation in legume species. NO3 - content in biomass decreased in most of the species under drought indicating significant decline in NO3 - uptake. Hordeum vulgare had the highest NO3 - concentrations in all organs even under drought and low NO3 - treatment. This species can likely respond much better to the combined adverse effects of low NO3 - and water scarcity. Nitrate reductase activity (NRA) was reduced in both roots and leaves of water deficient (WD) plants in all species except H. vulgare, presumably due to its high NO3 - contents. Further, transient reduction in NO3 - availability had no effect on sap pH. Therefore, it seems unlikely that NRA shifts from shoot root leading to the supposed alkalization of sap. We also did not observe any interactive effects of NO3 - and water deficiency on transpiration. Hence, as long as leaf NO3 - content remains stable, NO3 - availability in soil is not linked to short-term modulation of transpiration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...