Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1018272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325556

RESUMO

Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.

2.
Methods Mol Biol ; 2536: 119-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819602

RESUMO

The inoculum of H. fraxineus consists mainly of ascospores released from apothecia which are growing on fallen leaves infected during the previous year. The ascospores can be detected in various manners due to their high concentration in the air during the main sporulation season, which corresponds to astronomic summer. This methodology is focused on one of the methods which have been successfully used. It employs a cheap, but highly efficient rotating arm air sampler and a specific quantitative real-time PCR method for the quantification of the air samples. The methodology is accompanied by lots of detailed theoretical and practical notes for its smooth application, including mentioning other alternatives.


Assuntos
Ascomicetos , Fraxinus , Ascomicetos/genética , Doenças das Plantas , Esporos Fúngicos
3.
J Fungi (Basel) ; 8(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35330217

RESUMO

The ascomycetous fungus Ophiostoma novo-ulmi is the causative agent of the current Dutch elm disease (DED) pandemic, which has ravaged many tens of millions of European and North American elm trees. Host responses in vascular traits were studied in two Dutch elm hybrids, 'Groeneveld' and 'Dodoens', which show different vascular architecture in the secondary xylem and possess contrasting tolerances to DED. 'Groeneveld' trees, sensitive to DED, possessed a high number of small earlywood vessels. However, these trees showed a poor response to DED infection for the earlywood vascular characteristics. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 decreased from 65.4% down to 53.2%. A delayed response in the increasing density of vessels showing a reduced size in the latewood prevented neither the rapid fungal spread nor the massive colonisation of the secondary xylem tissues resulting in the death of the infected trees. 'Dodoens' trees, tolerant to DED, possessed a low number of large earlywood vessels and showed a prominent and fast response to DED infection. Vessel lumen areas of newly formed earlywood vessels were severely reduced together with the vessel size : number ratio. Following infection, the proportion of least vessels with a vessel lumen area less than 2500 µm2 increased from 75.6% up to 92.9%. A trend in the increasing density of vessels showing a reduced size was maintained not only in the latewood that was formed in the year of infection but also in the earlywood that was formed in the consecutive year. The occurrence of fungal hyphae in the earlywood vessels that were formed a year following the infection was severely restricted, as revealed by X-ray micro-computed tomography imaging. Possible reasons responsible for a contrasting survival of 'Groeneveld' and 'Dodoens' trees are discussed.

4.
J Fungi (Basel) ; 7(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829256

RESUMO

Bark cankers accompanied by symptoms of decline and dieback are the result of a destructive disease caused by Phytophthora infections in woody plants. Pathogenicity, gas exchange, chlorophyll a fluorescence, and volatile responses to P. cactorum and P. plurivora inoculations were studied in field-grown 10-year-old hybrid poplar plants. The most stressful effects of P. cactorum on photosynthetic behaviour were found at days 30 and 38 post-inoculation (p.-i.), whereas major disturbances induced by P. plurivora were identified at day 30 p.-i. and also belatedly at day 52 p.-i. The spectrum of volatile organic compounds emitted at day 98 p.-i. was richer than that at day 9 p.-i, and the emissions of both sesquiterpenes α-cubebene and germacrene D were induced solely by the Phytophthora inoculations. Significant positive relationships were found between both the axial and the tangential development of bark cankers and the emissions of α-cubebene and ß-caryophyllene, respectively. These results show that both α-cubebene and germacrene D are signal molecules for the suppression of Phytophthora hyphae spread from necrotic sites of the bark to healthy living tissues. Four years following inoculations, for the majority of the inoculated plants, the callus tissue had already closed over the bark cankers.

5.
PLoS One ; 15(1): e0227559, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910230

RESUMO

A multiplex real-time PCR method based on fluorescent TaqMan® probes was developed for the simultaneous detection of the tomato pathogenic bacteria Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and bacterial spot-causing xanthomonads. The specificity of the multiplex assay was validated on 44 bacterial strains, including 32 target pathogen strains as well as closely related species and nontarget tomato pathogenic bacteria. The designed multiplex real-time PCR showed high sensitivity when positive amplification was observed for one pg of bacterial DNA in the cases of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato bacteria and 100 pg for bacterial spot-causing xanthomonads. The reliability of the developed multiplex real-time PCR assay for in planta detection was verified by recognition of the target pathogens in 18 tomato plants artificially inoculated by each of the target bacteria and tomato samples from production greenhouses.


Assuntos
Actinobacteria/isolamento & purificação , Pseudomonas syringae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Solanum lycopersicum/microbiologia , Xanthomonas/isolamento & purificação , Actinobacteria/genética , Actinobacteria/fisiologia , Clavibacter , Ambiente Controlado , Solanum lycopersicum/crescimento & desenvolvimento , Pseudomonas syringae/genética , Pseudomonas syringae/fisiologia , Xanthomonas/genética , Xanthomonas/fisiologia
6.
Sci Rep ; 9(1): 8195, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160683

RESUMO

Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii, causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F. circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F. circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F. circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed.


Assuntos
Fusarium/isolamento & purificação , Biologia Molecular/normas , Pinus/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , DNA Fúngico/análise , DNA de Plantas , Reações Falso-Positivas , Fusarium/genética , Cooperação Internacional , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Tree Physiol ; 36(3): 335-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26843210

RESUMO

To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees.


Assuntos
Ophiostoma/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Característica Quantitativa Herdável , Ulmus/fisiologia , Hibridização Genética , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Análise de Componente Principal , Fatores de Tempo , Ulmus/microbiologia , Água , Xilema/microbiologia
8.
Ann Bot ; 111(2): 215-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23264236

RESUMO

BACKGROUND AND AIMS: Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. METHODS: Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. KEY RESULTS: 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. CONCLUSIONS: Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.


Assuntos
Ophiostoma/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Ulmus/imunologia , Quimera , Clorofila/metabolismo , Clorofila A , Resistência à Doença , Fluorometria/métodos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Fotossíntese/fisiologia , Doenças das Plantas/imunologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores , Ulmus/crescimento & desenvolvimento , Ulmus/microbiologia , Ulmus/fisiologia , Madeira/crescimento & desenvolvimento , Madeira/imunologia , Madeira/microbiologia , Madeira/fisiologia , Xilema/crescimento & desenvolvimento , Xilema/imunologia , Xilema/microbiologia , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...