Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Bioorg Chem ; 144: 107137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245951

RESUMO

Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.


Assuntos
Colite , Humanos , Animais , Camundongos , Receptor de Pregnano X/agonistas , Células CACO-2 , Colite/induzido quimicamente , Receptores Citoplasmáticos e Nucleares , Anti-Inflamatórios/uso terapêutico
2.
J Inorg Biochem ; 252: 112481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215536

RESUMO

A bis(chalcone) molecule (H2L) was synthesized via Aldol's condensation from terephthalaldehyde and 2'-hydroxyacetophenone and it was used as bridging ligand for the preparation of five dinuclear copper(II) complexes of the composition [Cu(NN)(µ-L)Cu(NN)](NO3)2⋅nH2O (n = 0-2) (1-5), where NN stands for a bidentate N-donor ligand such as phen (1,10-phenanthroline, 1), bpy (2,2'-bipyridine, 2), mebpy (5,5'-dimethyl-2,2'-dipyridine, 3), bphen (bathophenanthroline, 4) and nphen (5-nitro-1,10-phenanthroline, 5). The compounds were characterized by different suitable techniques to confirm their purity, composition, and structure. Moreover, the products were evaluated for their in vitro cytotoxicity on a panel of human cancer cell lines: ovarian (A2780), ovarian resistant to cisplatin (A2780R), prostate (PC3), osteosarcoma (HOS), breast (MCF7) and lung (A549), and normal fibroblasts (MRC-5), showing significant cytotoxicity in most cases, with IC50 ≈ 0.35-7.8 µM. Additionally, the time-dependent cytotoxicity and cellular uptake of copper, together with flow cytometric studies concerning cell-cycle arrest, induction of cell death and autophagy and induction of intracellular ROS/superoxide production in A2780 cells, were also performed. The results of biological testing on A2780 cells pointed out a possible mechanism of action characterized by the G2/M cell cycle arrest and induction of apoptosis by triggering the intrinsic signalling pathway associated with the damage of mitochondrial structure and depletion of mitochondrial membrane potential. SYNOPSIS: Dinuclear Cu(II) complexes bearing a bridging bis(chalcone) ligand revealed high in vitro cytotoxicity, initiated A2780 cell arrest at G2/M phase and efficiently triggered intrinsic pathway of apoptosis.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Complexos de Coordenação , Neoplasias Ovarianas , Humanos , Feminino , Cobre/química , Chalconas/farmacologia , Linhagem Celular Tumoral , Ligantes , Chalcona/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958638

RESUMO

Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.


Assuntos
Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Dibenzodioxinas Policloradas/efeitos adversos , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores
4.
Toxicol Lett ; 387: 63-75, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778463

RESUMO

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Esteroides , Humanos , Receptor de Pregnano X/genética , Células CACO-2 , Receptores de Hidrocarboneto Arílico/metabolismo , Indóis/farmacologia , Triptaminas/farmacologia , Receptores de Esteroides/metabolismo
5.
Inorg Chem ; 62(39): 15875-15890, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713240

RESUMO

Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{µ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{µ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{µ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.

6.
Biochem Pharmacol ; 216: 115797, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696457

RESUMO

Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/ß-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Esteroides , Animais , Camundongos , Receptor de Pregnano X/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Esteroides/metabolismo , Colo/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Inflamação/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569310

RESUMO

Alternaria alternata is a common fungus strongly related with severe allergic asthma, with 80% of affected individuals being sensitized solely to its major allergen Alt a 1. Here, we assessed the function of Alt a 1 as an innate defense protein binding to micronutrients, such as iron-quercetin complexes (FeQ2), and its impact on antigen presentation in vitro. Binding of Alt a 1 to FeQ2 was determined in docking calculations. Recombinant Alt a 1 was generated, and binding ability, as well as secondary and quaternary structure, assessed by UV-VIS, CD, and DLS spectroscopy. Proteolytic functions were determined by casein and gelatine zymography. Uptake of empty apo- or ligand-filled holoAlt a 1 were assessed in human monocytic THP1 cells under the presence of dynamin and clathrin-inhibitors, activation of the Arylhydrocarbon receptor (AhR) using the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for phenotypic changes in monocytes by flow cytometry. Alt a 1 bound strongly to FeQ2 as a tetramer with calculated Kd values reaching pico-molar levels and surpassing affinities to quercetin alone by a factor of 5000 for the tetramer. apoAlt a 1 but not holoAlta 1 showed low enzymatic activity against casein as a hexamer and gelatin as a trimer. Uptake of apo- and holo-Alt a 1 occurred partly clathrin-dependent, with apoAlt a 1 decreasing labile iron in THP1 cells and holoAlt a 1 facilitating quercetin-dependent AhR activation. In human PBMCs uptake of holoAlt a 1 but not apoAlt a 1 significantly decreased the surface expression of the costimulatory CD86, but also of HLADR, thereby reducing effective antigen presentation. We show here for the first time that the presence of nutritional iron complexes, such as FeQ2, significantly alters the function of Alt a 1 and dampens the human immune response, thereby supporting the notion that Alt a 1 only becomes immunogenic under nutritional deprivation.


Assuntos
Alérgenos , Asma , Humanos , Ferro/metabolismo , Caseínas , Quercetina , Clatrina , Alternaria/metabolismo
8.
Nat Commun ; 14(1): 2728, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169746

RESUMO

The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Receptores de Hidrocarboneto Arílico , Pele , Animais , Feminino , Camundongos , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Citocromo P-450 CYP1A1/genética , Ligantes , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
9.
Biochem Pharmacol ; 213: 115626, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247746

RESUMO

The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Ligação Proteica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
10.
Pharmaceutics ; 15(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839630

RESUMO

A series of six heteroleptic copper(II) complexes with 2'-hydroxy-4-(dimethylamino)chalcone (HL) with the composition [Cu(N-N)(L)]NO3 (1-6), where N-N stands for dmbpy = 5,5'-dimethyl-2,2'-bipyridine (1), bphen = 4,7-diphenyl-1,10-phenanthroline (2), dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine (3), nphen = 5-nitro-1,10-phenanthroline (4), bpy = 2,2'-bipyridine, (5), and dpa = 2,2'-dipyridylamine (6), was prepared and thoroughly characterized. The in vitro cytotoxicity screening on eight human cancer cell lines identified complex 2, containing the bulkiest N-donor ligands (bphen) as highly cytotoxic against cancer cells, with IC50 values ranking from 1.0 to 2.3 µM, with good selectivity and low toxicity against healthy human fetal lung fibroblasts MRC-5. The cell-based assays, involving the most effective complex 2 in A2780 cancer cells, revealed its strong pro-apoptotic effects based on the effective activation of caspases 3/7, ROS overproduction, and autophagy in the A2780 cells while not impeding the cell cycle and mitochondrial membrane functions. The cellular uptake studies in A2780 and 22Rv1 cells uncovered no intracellular transport of the cationic complex 2, supporting the hypothesis that the in vitro anticancer effects of complex 2 are based on the combined extrinsic activation of apoptosis and autophagy induction.

11.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768617

RESUMO

Motivated by the clinical success of gold(I) metallotherapeutic Auranofin in the effective treatment of both inflammatory and cancer diseases, we decided to prepare, characterize, and further study the [Au(kin)(PPh3)] complex (1), where Hkin = kinetin, 6-furfuryladenine, for its in vitro anti-cancer and anti-inflammatory activities. The results revealed that the complex (1) had significant in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, and THP-1), with IC50 ≈ 1-5 µM, which was even significantly better than that for the conventional platinum-based drug Cisplatin while comparable with Auranofin. Although its ability to inhibit transcription factor NF-κB activity did not exceed the comparative drug Auranofin, it has been found that it is able to positively influence peroxisome-proliferator-activated receptor-gamma (PPARγ), and as a consequence of this to have the impact of moderating/reducing inflammation. The cellular effects of the complex (1) in A2780 cancer cells were also investigated by cell cycle analysis, induction of apoptosis, intracellular ROS production, activation of caspases 3/7 and disruption of mitochondrial membrane potential, and shotgun proteomic analysis. Proteomic analysis of R2780 cells treated with complex (1) and starting compounds revealed possible different places of the effect of the studied compounds. Moreover, the time-dependent cellular accumulation of copper was studied by means of the mass spectrometry study with the aim of exploring the possible mechanisms responsible for its biological effects.


Assuntos
Ouro , Neoplasias Ovarianas , Humanos , Feminino , Ouro/farmacologia , Ouro/química , Cinetina/farmacologia , Linhagem Celular Tumoral , Reguladores de Crescimento de Plantas/farmacologia , PPAR gama , Auranofina/farmacologia , Proteômica , Neoplasias Ovarianas/metabolismo , Apoptose
12.
Eur J Med Chem ; 246: 114992, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525695

RESUMO

Two cationic [Cu2(L1-2)2](ClO4)2 (1, 2), and four neutral doubly bridged-phenoxido-copper(II) complexes [Cu2(L3-4)2] (3, 4) and [Cu2(L5-6)2(H2O)]‧2H2O (5, 6) as well as 1D polymeric catena-[Cu(L7)] (7), where HL1-2 and H2L3-7 represent tripodal tetradentate pyridyl or aliphatic-amino groups based 2,4-disubstituted phenolates, were synthesized and thoroughly characterized by various spectroscopic methods and single crystal X-ray analysis. The molecular structures of the complexes exhibited diverse geometrical environments around the central Cu(II) atoms. The in vitro antiproliferative activity of the isolated complexes and selected parent free ligands were screened against some human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, MCF-7). The most promising cytotoxicity against cancer cells were obtained for 1-6, while complex 6 was found as the best performing as compared to the reference drug cisplatin. The cytotoxicity study of complex 6 was therefore extended to wider variety of cancer cell lines (HOS, A549, PANC-1, CaCo2, HeLa) and results revealed its significant cytotoxicity on all investigated human cancer cells. The cell uptake study showed that cytotoxicity of 6 (3 µM concentration and 24 h of incubation) against A2780 cells was almost independent from the intracellular levels of copper. The effect of complexes 4, 6 and 7 on cell cycle of A2780 cells indicates that the mechanism of action in these complexes is not only different from that of cisplatin but also different among them. Complex 7 was able to induce apoptosis in A2780 cells, while complexes 4 and 6 did not and on the other hand, they showed considerable effect on autophagy induction and there are some clues that these complexes were able to induce cuproptosis in A2780 cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Cisplatino , Cobre/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Células CACO-2 , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Cristalografia por Raios X , Ligantes
13.
Gut ; 72(7): 1296-1307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270778

RESUMO

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Triptofano/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Intestinos , Inflamação
14.
Artigo em Inglês | MEDLINE | ID: mdl-34782797

RESUMO

AIMS: The objective of this study was to compare bone invasion type with histopathological, clinical and immunohistochemical prognostic factors. METHODS: The study included 49 patients who were treated for oral squamous cell carcinoma. Of which, 30 patients, with presence of bone invasion on histopathology, were divided according to the type of bone invasion (erosive, infiltrative, mixed). Each invasion type was compared to microvascular density using the CD34 marker. RESULTS: The bone invasion was observed in 30 out of 49 patients (61.22%). On McNemar's test, statistically significant association was observed between bone invasion types and histopathological grade. In contrast, no significant correlation was observed between bone invasion type, and tumour volume or nodal metastases. In tumours with bone invasion of the infiltrative type, higher frequency of locoregional relapses was observed. The 5-year survival, since diagnosis, was approximately 60% in the erosive group, 40% in the mixed group, and merely 15% in the infiltrative group. CONCLUSION: Peritumoural microvascular density was not significantly related to bone invasion types. Whereas, a significantly higher intratumoural microvascular density was observed in infiltrative type of the bone invasion, when compared to the erosive and mixed type.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Recidiva Local de Neoplasia/patologia , Orofaringe/patologia , Prognóstico
15.
Drug Metab Dispos ; 51(2): 219-227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184080

RESUMO

Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.


Assuntos
Receptores de Esteroides , Receptores de Esteroides/metabolismo , Xenobióticos/metabolismo , Ligantes , Intestinos , Proteínas de Transporte
16.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077780

RESUMO

The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.

17.
World J Surg Oncol ; 20(1): 288, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076218

RESUMO

BACKGROUND: Although syringoma is a common benign tumour of the sudoriferous gland, there is also an extremely rare malignant form known as syringoid eccrine carcinoma (SEC). SEC usually exhibits slow growth with deep invasion and a frequent tendency to relapse. The treatment of choice is radical wide resection, which poses a difficult reconstructive problem, especially when the tumour is located in the centre of the face. CASE PRESENTATION: In this case, a 70-year-old man was diagnosed with an SEC at the same location as a benign syringoma of the upper lip and nasal base that had undergone primary excision 7 years prior. Primary radical resection was performed with immediate Abbé flap reconstruction. Nevertheless, histology revealed positive margins, and 3 additional re-excisions were needed to achieve clear margins. Four months after the initial resection, the patient had undergone an innovative reconstruction technique including not only the Abbé flap but also a turbinate flap harvested with functional endonasal surgery and a three-stage forehead flap. CONCLUSION: To the best of our knowledge, this is the first case report of a suspect malignant transformation of a benign syringoma after 7 years. In addition, from oncoplastic and reconstructive points of view, the bilateral use of the turbinate flap for reconstructing the intranasal lining of the alar base is unusual, and the use of functional endonasal surgery in nasal reconstruction for reducing the risk of damaging the vascular supply of the flap is innovative.


Assuntos
Carcinoma , Procedimentos de Cirurgia Plástica , Neoplasias das Glândulas Sudoríparas , Siringoma , Idoso , Carcinoma/cirurgia , Testa/cirurgia , Humanos , Lábio/cirurgia , Masculino , Recidiva Local de Neoplasia/cirurgia , Neoplasias de Anexos e de Apêndices Cutâneos , Procedimentos de Cirurgia Plástica/métodos , Neoplasias Cutâneas , Neoplasias das Glândulas Sudoríparas/cirurgia , Siringoma/cirurgia , Conchas Nasais/cirurgia
18.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142735

RESUMO

Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.


Assuntos
Receptores de Hidrocarboneto Arílico , Triptofano , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Humanos , Indóis/metabolismo , Indóis/farmacologia , Intestinos , Ligantes , Propionatos , Piruvatos , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia
19.
Gut Microbes ; 14(1): 2105637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895845

RESUMO

Aryl hydrocarbon receptor (AhR) is a critical player in the crosstalk between the gut microbiota and its host. However, factors regulating AhR within the gut, which is a complex metabolomic environment, are poorly understood. This study investigates the effect of a combination of metabolites on the activation mechanism of AhR. AhR activity was evaluated using both a luciferase reporter system and mRNA levels of AhR target genes on human cell lines and human colonic explants. AhR activation was studied by radioligand-binding assay, nuclear translocation of AhR by immuofluorescence and protein co-immunoprecipitation of AhR with ARNT. Indirect activation of AhR was evaluated using several tests and inhibitors. The promoter of the target gene CYP1A1 was studied both by chromatin immunoprecipitation and by using an histone deacetylase HDAC inhibitor (iHDAC). Short-chain fatty acids, and butyrate in particular, enhance AhR activity mediated by endogenous tryptophan metabolites without binding to the receptor. This effect was confirmed in human intestinal explants and did not rely on activation of receptors targeted by SCFAs, inhibition of AhR degradation or clearance of its ligands. Butyrate acted directly on AhR target gene promoter to reshape chromatin through iHDAC activity. Our findings revealed that butyrate is not an AhR ligand but acts as iHDAC leading to an increase recruitment of AhR to the target gene promoter in the presence of tryptophan-derived AhR agonists. These data contribute to a novel understanding of the complex regulation of AhR activation by gut microbiota-derived metabolites.


Assuntos
Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Butiratos/farmacologia , Humanos , Ligantes , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...