Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 8(7): 3148-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27508036

RESUMO

Atrial natriuretic peptide (ANP) is produced and released by mammalian cardiomyocytes and induces natriuresis, diuresis, and lowering of blood pressure. The present study examined localization of ANP and a possible role of the hypothalamic-pituitary-adrenal axis (HPA) activity on the expression of proANP gene in the heart. The Sprague Dawley (SD) and Lewis (LE) rat strains were used. The animals were exposed to the two types of stress: immobilization and immobilization combined with water immersion for 1 hour. Localization of ANP was detected by immunohistochemistry and expression of the proANP mRNA by real-time qPCR in all heart compartments of control and stressed animals after 1 and 3 hours after stress termination (IS1, IS3, ICS1, and ICS3). Relatively high density of ANP-immunoreactivity was observed in both atria of both rat strains. In control rats of both strains, the expression of the proANP mRNA was higher in the atria than in ventricles. In SD rats with the intact HPA axis, an upregulation of ANP gene expression was observed in the right atrium after IS1, in both atria and the left ventricle after IS3 and in the left atrium and the left ventricle after ICS3. In LE rats with a blunted reactivity of the HPA axis, no increase or even a downregulation of the gene expression was observed. Thus, acute stress-induced increase in the expression of the proANP gene is related to the activity of the HPA axis. It may have relevance to ANP-induced protection of the heart.

2.
Lipids Health Dis ; 14: 151, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607422

RESUMO

BACKGROUND: Our goal was to investigate the effect of short term exercise on fasting and postprandial lipoprotein profile. METHODS: Healthy sedentary men exercised 20 min for four days. The intensity of exercise was modulated to maintain 75-80 % of a calculated HRmax. Before and after the exercise program, fasting and postprandial (4 h after standard meal) concentrations of lipoprotein subfractions were measured by an electrophoresis in polyacrylamide gel and total concentrations of TAG, LDL and HDL by enzymatic colorimetric method. After 2 days of rest, fasting and postprandial concentrations of lipoprotein fractions and subfractions were measured to determine a persistency of a changes in the lipoprotein profile. RESULTS: 4 days of physical exercise led to statistically significant decrease of concentration of triacylglycerol in fasting (76.29 ± 20.07, 53.92 ± 10.90, p < 0.05) and postprandial state (139.06 ± 23.72, 96.55 ± 25.21, p < 0.05) VLDL in fasting (21.88 ± 3.87, 18.00 ± 3.93, p < 0.05) and postprandial state (23.88 ± 3.52, 19.25 ± 3.62, p < 0.05), total cholesterol in fasting (162.26 ± 23.38, 148.91 ± 17.72, p < 0.05) and postprandial state (163.73 ± 23.02, 150.08 ± 18.11, p < 0.05). Atherogenic medium LDL decreased also in fasting (9.89 ± 3.27, 6.22 ± 2.55, p < 0.001) and postprandial state (8.88 ± 6.51, 6.88 ± 5.57, p < 0.001). However decrease of large IDL (25.38 ± 3.54, 23.88 ± 3.91, p < 0.05) and large LDL particles (42.89 ± 11.40, 38.67 ± 9.30) was observed only in postprandial state. Total HDL concentration remained unchanged but we observed statistically significant decrease of small HDL particles in fasting (6.11 ± 2.89, 4.22, p < 0.05) and postprandial state (6.44 ± 3.21, 4.56 ± 1.33, p < 0.05). Concentration of these particles are associated with progression of atherosclerosis. All changes of fasting and postprandial lipoprotein profile disappeared after 2 days of rest. CONCLUSION: Just 4 daily settings of 20 min of physical exercise can lead to significant positive changes of fasting and postprandial lipoprotein profile.


Assuntos
Colesterol/sangue , Jejum/sangue , Lipoproteínas/sangue , Triglicerídeos/sangue , Adulto , Exercício Físico , Humanos , Masculino , Período Pós-Prandial , Comportamento Sedentário , Adulto Jovem
3.
Peptides ; 61: 1-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149360

RESUMO

The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.


Assuntos
Cardiomiopatias/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Neuropeptídeos/metabolismo , Animais , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Humanos , Miocárdio/patologia
4.
Cell Tissue Res ; 323(3): 383-93, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16344947

RESUMO

Vasoactive intestinal peptide (VIP) is a vasorelaxant peptide that addresses two receptor subtypes, VPAC1 and VPAC2. It stimulates insulin secretion and mediates anti-inflammatory effects and has been proposed for treatment of type 2 and autoimmune diabetes. In the heart, VIP is produced and released primarily by intrinsic neurons and improves cardiac perfusion and function. Here, we investigated the involvement of this system in the events underlying development of experimentally induced diabetic cardiomyopathy. Rats received a single streptozotocin injection, and cardiac VIP content [radioimmune assay (RIA)], expression of the VIP precursors VPAC1 and VPAC2 [real-time reverse transcription-polymerase chain reaction (RT-PCR)], and VPAC1 and VPAC2 tissue distribution (immunohistochemistry) were assessed 4, 8, and 16 weeks thereafter and compared with corresponding vehicle-treated controls. Cardiac neuropathy manifests progressively during the first 4 months of diabetes at the preproVIP mRNA and VIP peptide level and is accompanied by initial down-regulation of VPAC2 at one prime target of VIP-containing axons, i.e., smooth muscle cells of coronary arterioles. VPAC1 is expressed by macrophages. After initial changes that are specific for atria and ventricles, respectively, VPAC1 and VPAC2 expression return to control levels at 16 weeks despite ongoing loss of VIP. Given the cardioprotective role of the VIP signaling system, the persistence of receptors has therapeutic implications since it is the prerequisite for trials with VPAC2 agonists.


Assuntos
Cardiomiopatias/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Precursores de Proteínas/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/biossíntese , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/biossíntese , Peptídeo Intestinal Vasoativo/biossíntese , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Ventrículos do Coração/metabolismo , Imuno-Histoquímica , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Precursores de Proteínas/biossíntese , Radioimunoensaio , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Timely Top Med Cardiovasc Dis ; 9: E33, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-16341283

RESUMO

Vasoactive intestinal peptide (VIP) is a 28-amino acid peptide that belongs to a family of structurally related peptide hormones including pituitary adenylate cyclase-activating peptide (PACAP). These hormones are widely distributed in the nervous system, where they act as neurotransmitters. Their biological effects are mediated by specific receptors, VPAC1 and VPAC2, which have comparable affinity for VIP and PACAP, and PAC1, which binds VIP with 1,000-fold lower affinity than PACAP. Both peptides are involved in autonomic regulation of the cardiovascular system, where they exert positive inotropic and chronotropic effects, and cause coronary vasodilatation. Additionally, PACAP inhibits proliferation of cardiac fibroblasts. Several cardiovascular diseases, such as myocardial fibrosis, heart failure, cardiomyopathy and pulmonary hypertension, have been found to be associated with changes in myocardial VIP concentration or with alteration of affinity, density and physiological responsiveness of VIP/PACAP receptors. Application of the peptides or their agonists has beneficial effect in hypertension, heart failure and myocardial fibrosis. Taken together, VIP and PACAP have beneficial effects in various pathological conditions.


Assuntos
Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
6.
Drug News Perspect ; 18(6): 387-91, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16247516

RESUMO

Vasoactive intestinal peptide (VIP) is a 28-amino acid peptide that belongs to a family of structurally related peptide hormones including pituitary adenylate cyclase-activating peptide (PACAP). These hormones are widely distributed in the nervous system, where they act as neurotransmitters. Their biological effects are mediated by specific receptors, VPAC1 and VPAC2, which have comparable affinity for VIP and PACAP, and PAC1, which binds VIP with 1,000-fold lower affinity than PACAP. Both peptides are involved in autonomic regulation of the cardiovascular system, where they exert positive inotropic and chronotropic effects, and cause coronary vasodilatation. Additionally, PACAP inhibits proliferation of cardiac fibroblasts. Several cardiovascular diseases, such as myocardial fibrosis, heart failure, cardiomyopathy and pulmonary hypertension, have been found to be associated with changes in myocardial VIP concentration or with alteration of affinity, density and physiological responsiveness of VIP/PACAP receptors. Application of the peptides or their agonists has beneficial effect in hypertension, heart failure and myocardial fibrosis. Taken together, VIP and PACAP have beneficial effects in various pathological conditions.


Assuntos
Sistema Cardiovascular/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Sistema Nervoso Autônomo/metabolismo , Vasos Sanguíneos/inervação , Vasos Sanguíneos/metabolismo , Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Sistema Cardiovascular/inervação , Gânglios Parassimpáticos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/prevenção & controle , Miocárdio/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/uso terapêutico , Vasodilatação/efeitos dos fármacos
7.
Ann Anat ; 187(4): 323-31, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16163845

RESUMO

The aortic bodies are small paraganglia distributed along the vagus nerve and its branches in the vicinity of the aortic arch which, like the carotid bodies, act as arterial chemoreceptors. In the rat carotid body, corelease of ATP and acetylcholine (ACh) from glomus cells is considered to be the main mechanism mediating fast hypoxic chemotransmission while dopamine, serotonin, and nitric oxide (NO) exert modulating effects. The present study was aimed at determination of the endogenous sources of serotonin, ACh and NO within rat and guinea pig aortic bodies by immunohistochemical double- and triple-labeling approaches, utilizing antibodies to serotonin, the NO and ACh synthesizing enzymes neuronal NO synthase (nNOS) and choline acetyltransferase (ChAT), respectively, as well as to the vesicular acetylcholine transporter (VAChT). Additional marker antibodies were directed against the rate-limiting enzyme of catecholamine synthesis, i.e. tyrosine hydroxylase (TH), and the vesicular protein, synaptophysin (SYN). In both species, all aortic body glomus cells were immunoreactive to serotonin and cholinergic markers. In the rat, all glomus cells were additionally catecholaminergic, as indicated by TH-immunoreactivity, whereas this applied only to a subgroup of guinea pig glomus cells. On the other hand, all guinea pig glomus cells were nNOS-immunoreactive, whereas only nerve fibers but not glomus cells exhibited nNOS-immunoreactivity in the rat. These data support the concept that the chemoexcitatory transmitters ACh and serotonin are involved in hypoxic excitation of aortic chemoreceptor terminals in both species. The production of the inhibitory modulators, dopamine and NO, however, appears to be species-specifically regulated.


Assuntos
Acetilcolina/metabolismo , Corpos Aórticos/citologia , Catecolaminas/metabolismo , Serotonina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Corpos Aórticos/metabolismo , Corpo Carotídeo/metabolismo , Colina O-Acetiltransferase/metabolismo , Cobaias , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Wistar , Sinaptofisina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...