Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(14): 145501, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634183

RESUMO

The Landau level spectroscopy technique has been used to explore the electronic structure of the valence band in a series of p-type HgTe/HgCdTe quantum wells with both normal and inverted ordering of bands. We find that the standard axial-symmetric 4-band Kane model, which is nowadays widely applied in physics of HgTe-based topological materials, does not fully account for the complex magneto-optical response observed in our experiments-notably, for the unexpected avoided crossings of excitations and for the appearance of transitions that are electric-dipole forbidden within this model. Nevertheless, reasonable agreement with experiments is achieved when the standard model is expanded to include effects of bulk and interface inversion asymmetries. These remove the axial symmetry, and among other, profoundly modify the shape of valence bands.

2.
Opt Express ; 26(10): 12755-12760, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801310

RESUMO

We report stimulated emission in the 2.8-3.5 µm wavelength range from HgTe/CdHgTe quantum well (QW) heterostructures at temperatures available with thermoelectric cooling. The structures were designed to suppress the Auger recombination by implementing narrow (1.5 - 2 nm wide) QWs. We conclude that Peltier cooled operation is feasible in lasers based on such structures, making them of interest for spectroscopy applications in the atmospheric transparency window from 3 to 5 µm.

3.
Phys Rev Lett ; 120(8): 086401, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543000

RESUMO

We report a direct observation of temperature-induced topological phase transition between the trivial and topological insulator states in an HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures, and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electronlike and holelike subbands. Their crossing at a critical magnetic field B_{c} is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of B_{c}, we directly extract the critical temperature T_{c} at which the bulk band gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.

4.
Nat Commun ; 7: 12576, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27573209

RESUMO

It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 10(6) m s(-1) remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...