Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36935840

RESUMO

Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.

2.
Sci Rep ; 11(1): 23800, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893687

RESUMO

The aim of this study was to evaluate the antimicrobial efficacy of non-thermal atmospheric plasma (NTAP) against Streptococcus mutans biofilms. Resin discs were fabricated, wet-polished, UV sterilized, and immersed in water for monomer extraction (37 °C, 24 h). Biofilms of bioluminescent S. mutans strain JM10 was grown on resin discs in anaerobic conditions for (37 °C, 24 h). Discs were divided into seven groups: control (CON), 2% chlorhexidine (CHX), only argon gas 150 s (ARG) and four NTAP treatments (30 s, 90 s, 120 s, 150 s). NTAP was applied using a plasma jet device. After treatment, biofilms were analyzed through the counting of viable colonies (CFU), bioluminescence assay (BL), scanning electron microscopy (SEM), and polymerase chain reaction (PCR). All NTAP-treated biofilm yielded a significant CFU reduction when compared to ARG and CON. BL values showed that NTAP treatment for 90 s, 120 s or 150 s resulted in statistically significantly lower metabolic activity when compared to the other groups. CHX displayed the lowest means of CFU and BL. SEM showed significant morphological changes in NTAP-treated biofilm. PCR indicated damage to the DNA structure after NTAP treatment. NTAP treatment was effective in lowering the viability and metabolism of S. mutans in a time-dependent manner, suggesting its use as an intraoral surface-decontamination strategy.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Resinas Compostas , Gases em Plasma/farmacologia , Streptococcus mutans/efeitos dos fármacos , Medições Luminescentes/métodos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Streptococcus mutans/ultraestrutura , Propriedades de Superfície , Fatores de Tempo
3.
Cladistics ; 36(4): 358-373, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618969

RESUMO

With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.


Assuntos
Adenovírus Humanos/genética , Adenovirus dos Símios/genética , Genoma Viral , Infecções por Adenoviridae , Adenovírus Humanos/classificação , Adenovirus dos Símios/classificação , Animais , Evolução Molecular , Genômica , Humanos , Filogenia , Zoonoses
4.
FEBS Lett ; 593(24): 3583-3608, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31769017

RESUMO

Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.


Assuntos
Adenovírus Humanos/patogenicidade , Evolução Biológica , Proteínas do Olho/genética , Interações Hospedeiro-Patógeno/genética , Ceratite/genética , Ceratoconjuntivite/genética , Proteínas Virais/genética , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Animais , Túnica Conjuntiva/imunologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Túnica Conjuntiva/virologia , Córnea/imunologia , Córnea/metabolismo , Córnea/patologia , Córnea/virologia , Modelos Animais de Doenças , Proteínas do Olho/imunologia , Regulação da Expressão Gênica , Genômica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Ceratite/imunologia , Ceratite/patologia , Ceratite/virologia , Ceratoconjuntivite/imunologia , Ceratoconjuntivite/patologia , Ceratoconjuntivite/virologia , Filogenia , Proteínas Virais/imunologia , Tropismo Viral/genética , Tropismo Viral/imunologia
5.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243128

RESUMO

Genomics analysis of a historically intriguing and predicted emergent human adenovirus (HAdV) pathogen, which caused pneumonia and death, provides insight into a novel molecular evolution pathway involving "ping-pong" zoonosis and anthroponosis. The genome of this promiscuous pathogen is embedded with evidence of unprecedented multiple, multidirectional, stable, and reciprocal cross-species infections of hosts from three species (human, chimpanzee, and bonobo). This recombinant genome, typed as HAdV-B76, is identical to two recently reported simian AdV (SAdV) genomes isolated from chimpanzees and bonobos. Additionally, the presence of a critical adenoviral replication element found in HAdV genomes, in addition to genes that are highly similar to counterparts in other HAdVs, reinforces its potential as a human pathogen. Reservoirs in nonhuman hosts may explain periods of apparent absence and then reemergence of human adenoviral pathogens, as well as present pathways for the genesis of those thought to be newly emergent. The nature of the HAdV-D76 genome has implications for the use of SAdVs as gene delivery vectors in human gene therapy and vaccines, selected to avoid preexisting and potentially fatal host immune responses to HAdV.IMPORTANCE An emergent adenoviral human pathogen, HAdV-B76, associated with a fatality in 1965, shows a remarkable degree of genome identity with two recently isolated simian adenoviruses that contain cross-species genome recombination events from three hosts: human, chimpanzee, and bonobo. Zoonosis (nonhuman-to-human transmission) and anthroponosis (human to nonhuman transmission) may play significant roles in the emergence of human adenoviral pathogens.


Assuntos
Adenovírus Humanos/genética , Adenovirus dos Símios/genética , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/patogenicidade , Adenovirus dos Símios/patogenicidade , Animais , Biologia Computacional/métodos , DNA Viral/genética , Evolução Molecular , Genoma Viral/genética , Genômica/métodos , Humanos , Pan paniscus/virologia , Pan troglodytes/virologia , Filogenia , Recombinação Genética/genética , Zoonoses
6.
Viruses ; 11(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744049

RESUMO

Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses of species D (HAdV-D), including likelihood clade model partitioning, provided highly significant evidence of divergence of HAdV-Ds into two distinct groups for the conserved region 3 (CR3), present only in the E1A 13S isoform. This variance within E1A 13S of HAdV-Ds was not found in any other human adenovirus (HAdV) species. By protein sequence and structural analysis, the zinc finger motif of E1A CR3, previously shown as critical for transcriptional activation, showed the greatest differences. Subsequent codon usage bias analysis revealed substantial divergence in E1A 13S between the two groups of HAdV-Ds, suggesting that these two sub-groups of HAdV-D evolved under different cellular conditions. Hence, HAdV-D E1A embodies a previously unappreciated evolutionary divergence among HAdVs.


Assuntos
Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/genética , Evolução Molecular , Dedos de Zinco , Biologia Computacional , Sequência Conservada , Regulação Viral da Expressão Gênica , Humanos , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Ativação Transcricional
7.
Artigo em Inglês | MEDLINE | ID: mdl-30643873

RESUMO

Here, we report the draft genome sequence of Streptococcus pneumoniae EF3030, a pediatric otitis media isolate active in biofilm assays of epithelial colonization. The final draft assembly included 2,209,198 bp; the annotation predicted 2,120 coding DNA sequences (CDSs), 4 complete rRNA operons, 58 tRNAs, 3 noncoding RNAs (ncRNAs), and 199 pseudogenes.

8.
Front Microbiol ; 9: 3005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555456

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2018.02178.].

10.
Front Microbiol ; 9: 2178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254627

RESUMO

Human adenovirus (HAdV) infections cause disease world-wide. Whole genome sequencing has now distinguished 90 distinct genotypes in 7 species (A-G). Over half of these 90 HAdVs fall within species D, with essentially all of the HAdV-D whole genome sequences generated in the last decade. Herein, we describe recent new findings made possible by mining of this expanded genome database, and propose future directions to elucidate new functional elements and new functions for previously known viral components.

11.
mSphere ; 3(3)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29925671

RESUMO

Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5' to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism.IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota.


Assuntos
Adenovírus Humanos/genética , Escherichia coli/enzimologia , Recombinases Rec A/metabolismo , Recombinação Genética , Adenovírus Humanos/crescimento & desenvolvimento , DNA Viral/genética , DNA Viral/metabolismo , Humanos , Ligação Proteica , Replicação Viral
12.
Emerg Microbes Infect ; 7(1): 10, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29410402

RESUMO

Human adenoviruses (HAdVs) are uniquely important "model organisms" as they have been used to elucidate fundamental biological processes, are recognized as complex pathogens, and are used as remedies for human health. As pathogens, HAdVs may effect asymptomatic or mild and severe symptomatic disease upon their infection of respiratory, ocular, gastrointestinal, and genitourinary systems. High-resolution genomic data have enhanced the understanding of HAdV epidemiology, with recombination recognized as an important and major pathway in the molecular evolution and genesis of emergent HAdV pathogens. To support this view and to actualize an algorithm for identifying, characterizing, and typing novel HAdVs, we determined the DNA sequence of 95 isolates from archives containing historically important pathogens and collections housing currently circulating strains to be sequenced. Of the 85 samples that were completely sequenced, 18 novel recombinants within species HAdV-B and D were identified. Two HAdV-D genomes were found to contain novel penton base and fiber genes with significant divergence from known molecular types. In this data set, we found additional isolates of HAdV-D53 and HAdV-D58, two novel genotypes recognized recently using genomics. This supports the thesis that novel HAdV genotypes are not limited to "one-time" appearances of the prototype but are of importance in HAdV epidemiology. These data underscore the significance of lateral genomic transfer in HAdV evolution and reinforce the potential public health impact of novel genotypes of HAdVs emerging in the population.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , DNA Viral/genética , Genoma Viral , Genômica , Infecções por Adenovirus Humanos/epidemiologia , Adenovírus Humanos/patogenicidade , Sequência de Bases , Biologia Computacional , Evolução Molecular , Genótipo , Humanos , Filogenia , Recombinação Genética , Análise de Sequência de DNA
13.
PLoS One ; 12(12): e0189032, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236742

RESUMO

Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.


Assuntos
Bacteriemia/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Doenças do Recém-Nascido/microbiologia , Escherichia coli/crescimento & desenvolvimento , Humanos , Recém-Nascido , Virulência
14.
BMC Genomics ; 18(1): 317, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431495

RESUMO

BACKGROUND: For most pathogens, iron (Fe) homeostasis is crucial for maintenance within the host and the ability to cause disease. The primary transcriptional regulator that controls intracellular Fe levels is the Fur (ferric uptake regulator) protein, which exerts its action on transcription by binding to a promoter-proximal sequence termed the Fur box. Fur-regulated transcriptional responses are often fine-tuned at the post-transcriptional level through the action of small regulatory RNAs (sRNAs). Consequently, identifying sRNAs contributing to the control of Fe homeostasis is important for understanding the Fur-controlled bacterial Fe-response network. RESULTS: In this study, we sequenced size-selected directional libraries representing sRNA samples from Neisseria gonorrhoeae strain FA 1090, and examined the Fe- and temporal regulation of these sRNAs. RNA-seq data for all time points identified a pool of at least 340 potential sRNAs. Differential analysis demonstrated that expression appeared to be regulated by Fe availability for at least fifteen of these sRNAs. Fourteen sRNAs were induced in high Fe conditions, consisting of both cis and trans sRNAs, some of which are predicted to control expression of a known virulence factor, and one SAM riboswitch. An additional putative cis-acting sRNA was repressed by Fe availability. In the pathogenic Neisseria species, one sRNA that contributes to Fe-regulated post-transcriptional control is the Fur-repressible sRNA NrrF. The expression of five Fe-induced sRNAs appeared to be at least partially controlled by NrrF, while the remainder was expressed independently of NrrF. The expression of the 14 Fe-induced sRNAs also exhibited temporal control, as their expression levels increased dramatically as the bacteria entered stationary phase. CONCLUSIONS: Here we report the temporal expression of Fe-regulated sRNAs in N. gonorrhoeae FA 1090 with several appearing to be controlled by the Fe-repressible sRNA NrrF. Temporal regulation of these sRNAs suggests a regulatory role in controlling functions necessary for survival, and may be important for phenotypes often associated with altered growth rates, such as biofilm formation or intracellular survival. Future functional studies will be needed to understand how these regulatory sRNAs contribute to gonococcal biology and pathogenesis.


Assuntos
Ferro/farmacologia , Neisseria gonorrhoeae/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/crescimento & desenvolvimento , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , Riboswitch/efeitos dos fármacos , Riboswitch/genética , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Sci Rep ; 7(1): 618, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377580

RESUMO

Human adenoviruses (HAdVs) shut down host cellular cap-dependent mRNA translation while initiating the translation of viral late mRNAs in a cap-independent manner. HAdV 5' untranslated regions (5'UTRs) are crucial for cap-independent initiation, and influence mRNA localization and stability. However, HAdV translational regulation remains relatively uncharacterized. The HAdV tripartite leader (TPL), composed of three introns (TPL 1-3), is critical to the translation of HAdV late mRNA. Herein, we annotated and analyzed 72 HAdV genotypes for the HAdV TPL and another previously described leader, the i-leader. Using HAdV species D, type 37 (HAdV-D37), we show by reverse transcription PCR and Sanger sequencing that mRNAs of the HAdV-D37 E3 transcription unit are spliced to the TPL. We also identified a polycistronic mRNA for RID-α and RID-ß. Analysis of the i-leader revealed a potential open reading frame within the leader sequence and the termination of this potential protein in TPL3. A potential new leader embedded within the E3 region was also detected and tentatively named the j-leader. These results suggest an underappreciated complexity of post-transcriptional regulation, and the importance of HAdV 5'UTRs for precisely coordinated viral protein expression along the path from genotype to phenotype.


Assuntos
Regiões 5' não Traduzidas , Adenovírus Humanos/genética , RNA Mensageiro , RNA Viral , Animais , Composição de Bases , Sequência de Bases , Regulação Viral da Expressão Gênica , Variação Genética , Genoma Viral , Genótipo , Humanos , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Transcrição Gênica
16.
J Virol ; 90(21): 9598-9607, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27512073

RESUMO

Human adenoviruses (HAdVs) contain seven species (HAdV-A to -G), each associated with specific disease conditions. Among these, HAdV-D includes those viruses associated with epidemic keratoconjunctivitis (EKC), a severe ocular surface infection. The reasons for corneal tropism for some but not all HAdV-Ds are not known. The fiber protein is a major capsid protein; its C-terminal "knob" mediates binding with host cell receptors to facilitate subsequent viral entry. In a comprehensive phylogenetic analysis of HAdV-D capsid genes, fiber knob gene sequences of HAdV-D types associated with EKC formed a unique clade. By proteotyping analysis, EKC virus-associated fiber knobs were uniquely shared. Comparative structural modeling showed no distinct variations in fiber knobs of EKC types but did show variation among HAdV-Ds in a region overlapping with the known CD46 binding site in HAdV-B. We also found signature amino acid positions that distinguish EKC from non-EKC types, and by in vitro studies we showed that corneal epithelial cell tropism can be predicted by the presence of a lysine or alanine at residue 240. This same amino acid residue in EKC viruses shows evidence for positive selection, suggesting that evolutionary pressure enhances fitness in corneal infection, and may be a molecular determinant in EKC pathogenesis. IMPORTANCE: Viruses adapt various survival strategies to gain entry into target host cells. Human adenovirus (HAdV) types are associated with distinct disease conditions, yet evidence for connections between genotype and cellular tropism is generally lacking. Here, we provide a structural and evolutionary basis for the association between specific genotypes within HAdV species D and epidemic keratoconjunctivitis, a severe ocular surface infection. We find that HAdV-D fiber genes of major EKC pathogens, specifically the fiber knob gene region, share a distinct phylogenetic clade. Deeper analysis of the fiber gene revealed that evolutionary pressure at crucial amino acid sites has a significant impact on its structural conformation, which is likely important in host cell binding and entry. Specific amino acids in hot spot residues provide a link to ocular cell tropism and possibly to corneal pathogenesis.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Ceratoconjuntivite/virologia , Células A549 , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Córnea/virologia , DNA Viral/genética , Genótipo , Humanos , Filogenia , Alinhamento de Sequência/métodos , Análise de Sequência de DNA , Internalização do Vírus
17.
BMC Microbiol ; 16(1): 141, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400788

RESUMO

BACKGROUND: Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. RESULTS: Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form ß-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. CONCLUSIONS: Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Borrelia burgdorferi/química , Algoritmos , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Redes de Comunicação de Computadores , Metodologias Computacionais , Consenso , Genoma Bacteriano , Humanos , Lipossomos/metabolismo , Doença de Lyme/microbiologia , Óperon , Porinas/metabolismo , Potência de Vacina , Fatores de Virulência/metabolismo
18.
Virology ; 485: 452-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343864

RESUMO

Viruses within human adenovirus species D (HAdV-D) infect epithelia at essentially every mucosal site. Hypervariable loops 1 and 2 of the hexon capsid protein contain epitopes that together form the epsilon determinant for serum neutralization. We report our analyses comparing HAdV-D15, 29, 56, and the recently identified type 69, each with highly similar hexons and the same serum neutralization profile, but otherwise disparate genomes. Of these, only HAdV-D type 56 is associated with epidemic keratoconjunctivitis (EKC), a severe infection of ocular surface epithelium and underlying corneal stroma. In the mouse adenovirus keratitis model, all four viruses induced inflammation. However, HAdV-D56 entry into human corneal epithelial cells and fibroblasts in vitro dramatically exceeded that of the other three viruses. We conclude that the hexon epsilon determinant is not a prime contributor to corneal tropism.


Assuntos
Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Epitopos/genética , Epitopos/imunologia , Recombinação Genética , Tropismo Viral , Animais , Linhagem Celular , Córnea/virologia , Modelos Animais de Doenças , Genoma Viral , Humanos , Ceratite/patologia , Ceratite/virologia , Ceratoconjuntivite/patologia , Ceratoconjuntivite/virologia , Camundongos , Filogenia
19.
Genome Announc ; 3(1)2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25720688

RESUMO

Neonatal bacteremia Escherichia coli strains commonly belong to the K1 capsular type. Their ability to cause invasive neonatal disease appears to be determined by other virulence factors that have yet to be identified. We report here the genome sequences of four E. coli neonatal bacteremia isolates, including that of the archetypal strain RS218.

20.
BMC Bioinformatics ; 15 Suppl 11: S8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350501

RESUMO

BACKGROUND: The Bacillus cereus sensu lato group contains ubiquitous facultative anaerobic soil-borne Gram-positive spore-forming bacilli. Molecular phylogeny and comparative genome sequencing have suggested that these organisms should be classified as a single species. While clonal in nature, there do not appear to be species-specific clonal lineages, excepting B. anthracis, in spite of the wide array of phenotypes displayed by these organisms. RESULTS: We compared the protein-coding content of 201 B. cereus sensu lato genomes to characterize differences and understand the consequences of these differences on biological function. From this larger group we selected a subset consisting of 25 whole genomes for deeper analysis. Cluster analysis of orthologous proteins grouped these genomes into five distinct clades. Each clade could be characterized by unique genes shared among the group, with consequences for the phenotype of each clade. Surprisingly, this population structure recapitulates our recent observations on the divergence of the generalized stress response (SigB) regulons in these organisms. Divergence of the SigB regulon among these organisms is primarily due to the placement of SigB-dependent promoters that bring genes from a common gene pool into/out of the SigB regulon. CONCLUSIONS: Collectively, our observations suggest the hypothesis that the evolution of these closely related bacteria is a consequence of two distinct processes. Horizontal gene transfer, gene duplication/divergence and deletion dictate the underlying coding capacity in these genomes. Regulatory divergence overlays this protein coding reservoir and shapes the expression of both the unique and shared coding capacity of these organisms, resulting in phenotypic divergence. Data from other organisms suggests that this is likely a common pattern in prokaryotic evolution.


Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/genética , Bacillus cereus/classificação , Bacillus cereus/metabolismo , Análise por Conglomerados , Evolução Molecular , Genoma Bacteriano , Fenótipo , Filogenia , Regulon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...