Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(9): 4530-4541, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764755

RESUMO

Mixed anion halide-chalcogenide materials have recently attracted attention for a variety of applications, owing to their desirable optoelectronic properties. We report the synthesis of a previously unreported mixed-metal chalcohalide material, CuBiSeCl2 (Pnma), accessed through a simple, low-temperature solid-state route. The physical structure is characterized through single-crystal X-ray diffraction and reveals significant Cu displacement within the CuSe2Cl4 octahedra. The electronic structure of CuBiSeCl2 is investigated computationally, which indicates highly anisotropic charge carrier effective masses, and by experimental verification using X-ray photoelectron spectroscopy, which reveals a valence band dominated by Cu orbitals. The band gap is measured to be 1.33(2) eV, a suitable value for solar absorption applications. The electronic and thermal properties, including resistivity, Seebeck coefficient, thermal conductivity, and heat capacity, are also measured, and it is found that CuBiSeCl2 exhibits a low room temperature thermal conductivity of 0.27(4) W K-1 m-1, realized through modifications to the phonon landscape through increased bonding anisotropy.

2.
Chemphyschem ; : e202400254, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567647

RESUMO

The crystal structures of known materials contain the information about the interatomic interactions that produced these stable compounds. Similar to the use of reported protein structures to extract effective interactions between amino acids, that has been a useful tool in protein structure prediction, we demonstrate how to use this statistical paradigm to learn the effective inter-atomic interactions in crystalline inorganic solids. By analyzing the reported crystallographic data for inorganic materials, we have constructed statistically derived proxy potentials (SPPs) that can be used to assess how realistic or unusual a computer-generated structure is compared to the reported experimental structures. The SPPs can be directly used for structure optimization to improve this similarity metric, that we refer to as the SPP score. We apply such optimization step to markedly improve the quality of the input crystal structures for DFT calculations and demonstrate that the SPPs accelerate geometry optimization for three systems relevant to battery materials. As this approach is chemistry-agnostic and can be used at scale, we produced a database of all possible pair potentials in a tabulated form ready to use.

3.
Angew Chem Int Ed Engl ; 63(23): e202403670, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470158

RESUMO

A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of "kagome-NiAs" type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.

4.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446007

RESUMO

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

5.
Science ; 383(6684): 739-745, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359130

RESUMO

Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.

6.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341704

RESUMO

Computational exploration of the compositional spaces of materials can provide guidance for synthetic research and thus accelerate the discovery of novel materials. Most approaches employ high-throughput sampling and focus on reducing the time for energy evaluation for individual compositions, often at the cost of accuracy. Here, we present an alternative approach focusing on effective sampling of the compositional space. The learning algorithm PhaseBO optimizes the stoichiometry of the potential target material while improving the probability of and accelerating its discovery without compromising the accuracy of energy evaluation.

7.
Nano Lett ; 24(9): 2689-2697, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285690

RESUMO

Simulating the behavior of metal nanoparticles on supports is crucial for boosting their catalytic performance and various nanotechnology applications; however, such simulations are limited by the conflicts between accuracy and efficiency. Herein, we introduce a multiscale modeling strategy to unveil the morphology of Ru supported on pristine and N-doped graphene. Our multiscale modeling started with the electronic structures of a supported Ru single atom, revealing the strong metal-support interaction around pyridinic nitrogen sites. To determine the stable configurations of Ru2-13 clusters on three different graphene supports, global energy minimum searches were performed. The sintering of the global minimum Ru13 clusters on supports was further simulated by ab initio molecular dynamics (AIMD). The AIMD data set was then collected for deep potential molecular dynamics to study the melting of Ru nanoparticles. This study presents comprehensive descriptions of carbon-supported Ru and develops modeling approaches that bridge different scales and can be applied to various supported nanoparticle systems.

8.
Nature ; 619(7968): 68-72, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407679

RESUMO

Crystalline materials enable essential technologies, and their properties are determined by their structures. Crystal structure prediction can thus play a central part in the design of new functional materials1,2. Researchers have developed efficient heuristics to identify structural minima on the potential energy surface3-5. Although these methods can often access all configurations in principle, there is no guarantee that the lowest energy structure has been found. Here we show that the structure of a crystalline material can be predicted with energy guarantees by an algorithm that finds all the unknown atomic positions within a unit cell by combining combinatorial and continuous optimization. We encode the combinatorial task of finding the lowest energy periodic allocation of all atoms on a lattice as a mathematical optimization problem of integer programming6,7, enabling guaranteed identification of the global optimum using well-developed algorithms. A single subsequent local minimization of the resulting atom allocations then reaches the correct structures of key inorganic materials directly, proving their energetic optimality under clear assumptions. This formulation of crystal structure prediction establishes a connection to the theory of algorithms and provides the absolute energetic status of observed or predicted materials. It provides the ground truth for heuristic or data-driven structure prediction methods and is uniquely suitable for quantum annealers8-10, opening a path to overcome the combinatorial explosion of atomic configurations.

9.
Chem Mater ; 35(10): 3801-3814, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251101

RESUMO

One of the great advantages of organic-inorganic metal halides is that their structures and properties are highly tuneable and this is important when optimizing materials for photovoltaics or other optoelectronic devices. One of the most common and effective ways of tuning the electronic structure is through anion substitution. Here, we report the inclusion of bromine into the layered perovskite [H3N(CH2)6NH3]PbBr4 to form [H3N(CH2)6NH3]PbBr4·Br2, which contains molecular bromine (Br2) intercalated between the layers of corner-sharing PbBr6 octahedra. Bromine intercalation in [H3N(CH2)6NH3]PbBr4·Br2 results in a decrease in the band gap of 0.85 eV and induces a structural transition from a Ruddlesden-Popper-like to Dion-Jacobson-like phase, while also changing the conformation of the amine. Electronic structure calculations show that Br2 intercalation is accompanied by the formation of a new band in the electronic structure and a significant decrease in the effective masses of around two orders of magnitude. This is backed up by our resistivity measurements that show that [H3N(CH2)6NH3]PbBr4·Br2 has a resistivity value of one order of magnitude lower than [H3N(CH2)6NH3]PbBr4, suggesting that bromine inclusion significantly increases the mobility and/or carrier concentration in the material. This work highlights the possibility of using molecular inclusion as an alternative tool to tune the electronic properties of layered organic-inorganic perovskites, while also being the first example of molecular bromine inclusion in a layered lead halide perovskite. By using a combination of crystallography and computation, we show that the key to this manipulation of the electronic structure is the formation of halogen bonds between the Br2 and Br in the [PbBr4]∞ layers, which is likely to have important effects in a range of organic-inorganic metal halides.

10.
J Am Chem Soc ; 144(48): 22178-22192, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36413810

RESUMO

Argyrodite is a key structure type for ion-transporting materials. Oxide argyrodites are largely unexplored despite sulfide argyrodites being a leading family of solid-state lithium-ion conductors, in which the control of lithium distribution over a wide range of available sites strongly influences the conductivity. We present a new cubic Li-rich (>6 Li+ per formula unit) oxide argyrodite Li7SiO5Cl that crystallizes with an ordered cubic (P213) structure at room temperature, undergoing a transition at 473 K to a Li+ site disordered F4̅3m structure, consistent with the symmetry adopted by superionic sulfide argyrodites. Four different Li+ sites are occupied in Li7SiO5Cl (T5, T5a, T3, and T4), the combination of which is previously unreported for Li-containing argyrodites. The disordered F4̅3m structure is stabilized to room temperature via substitution of Si4+ with P5+ in Li6+xP1-xSixO5Cl (0.3 < x < 0.85) solid solution. The resulting delocalization of Li+ sites leads to a maximum ionic conductivity of 1.82(1) × 10-6 S cm-1 at x = 0.75, which is 3 orders of magnitude higher than the conductivities reported previously for oxide argyrodites. The variation of ionic conductivity with composition in Li6+xP1-xSixO5Cl is directly connected to structural changes occurring within the Li+ sublattice. These materials present superior atmospheric stability over analogous sulfide argyrodites and are stable against Li metal. The ability to control the ionic conductivity through structure and composition emphasizes the advances that can be made with further research in the open field of oxide argyrodites.

11.
Phys Chem Chem Phys ; 24(26): 16374-16387, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762846

RESUMO

Exploration of chemical composition and structural configuration space is the central problem in crystal structure prediction. Even in limiting structure space to a single structure type, many different compositions and configurations are possible. In this work, we attempt to address this problem using an extension to the existing ChemDASH code in which variable compositions can be explored. We show that ChemDASH is an efficient method for exploring a fixed-composition space of spinel structures and build upon this to include variable compositions in the Mn-Fe-Zn-O spinel phase field. This work presents the first basin-hopping crystal structure prediction method that can explore variable compositions.

12.
Chem Mater ; 34(9): 4073-4087, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35573111

RESUMO

A tetragonal argyrodite with >7 mobile cations, Li7Zn0.5SiS6, is experimentally realized for the first time through solid state synthesis and exploration of the Li-Zn-Si-S phase diagram. The crystal structure of Li7Zn0.5SiS6 was solved ab initio from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. Li7Zn0.5SiS6 adopts a tetragonal I4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered F43m structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn2+ into the Li sublattice and enables a range of possible jump processes. Zn2+ occupies the 48h T5 site in the high-temperature F43m structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in I4 Li7Zn0.5SiS6. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10-7 S cm-1 at room temperature and 4.3(4) × 10-4 S cm-1 at 503 K. The transition between the ordered I4 and disordered F43m structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn2+ exercises dramatic control of Li order in Li7Zn0.5SiS6 yielding a previously unseen distribution of Li sites, expanding our understanding of structure-property relationships in argyrodite materials.

13.
Angew Chem Int Ed Engl ; 61(9): e202114573, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34878706

RESUMO

The choice of metal and linker together define the structure and therefore the guest accessibility of a metal-organic framework (MOF), but the large number of possible metal-linker combinations makes the selection of components for synthesis challenging. We predict the guest accessibility of a MOF with 80.5 % certainty based solely on the identity of these two components as chosen by the experimentalist, by decomposing reported experimental three-dimensional MOF structures in the Cambridge Structural Database into metal and linker and then learning the connection between the components' chemistry and the MOF porosity. Pore dimensions of the guest-accessible space are classified into four ranges with three sequential models. Both the dataset and the predictive models are available to download and offer simple guidance in prioritization of the choice of the components for exploratory MOF synthesis for separation and catalysis based on guest accessibility considerations.

14.
Inorg Chem ; 60(24): 19022-19034, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34870428

RESUMO

Li-rich rocksalt oxides are promising candidates as high-energy density cathode materials for next-generation Li-ion batteries because they present extremely diverse structures and compositions. Most reported materials in this family contain as many cations as anions, a characteristic of the ideal cubic closed-packed rocksalt composition. In this work, a new rocksalt-derived structure type is stabilized by selecting divalent Cu and pentavalent Sb cations to favor the formation of oxygen vacancies during synthesis. The structure and composition of the oxygen-deficient Li4CuSbO5.5□0.5 phase is characterized by combining X-ray and neutron diffraction, ICP-OES, XAS, and magnetometry measurements. The ordering of cations and oxygen vacancies is discussed in comparison with the related Li2CuO2□1 and Li5SbO5□1 phases. The electrochemical properties of this material are presented, with only 0.55 Li+ extracted upon oxidation, corresponding to a limited utilization of cationic and/or anionic redox, whereas more than 2 Li+ ions can be reversibly inserted upon reduction to 1 V vs Li+/Li, a large capacity attributed to a conversion reaction and the reduction of Cu2+ to Cu0. Control of the formation of oxygen vacancies in Li-rich rocksalt oxides by selecting appropriate cations and synthesis conditions affords a new route for tuning the electrochemical properties of cathode materials for Li-ion batteries. Furthermore, the development of material models of the required level of detail to predict phase diagrams and electrochemical properties, including oxygen release in Li-rich rocksalt oxides, still relies on the accurate prediction of crystal structures. Experimental identification of new accessible structure types stabilized by oxygen vacancies represents a valuable step forward in the development of predictive models.

15.
Chem Mater ; 33(22): 8733-8744, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34840424

RESUMO

Mixed anion materials and anion doping are very promising strategies to improve solid-state electrolyte properties by enabling an optimized balance between good electrochemical stability and high ionic conductivity. In this work, we present the discovery of a novel lithium aluminum sulfide-chloride phase, obtained by substitution of chloride for sulfur in Li3AlS3 and Li5AlS4 materials. The structure is strongly affected by the presence of chloride anions on the sulfur site, as the substitution was shown to be directly responsible for the stabilization of a higher symmetry phase presenting a large degree of cationic site disorder, as well as disordered octahedral lithium vacancies. The effect of disorder on the lithium conductivity properties was assessed by a combined experimental-theoretical approach. In particular, the conductivity is increased by a factor 103 compared to the pure sulfide phase. Although it remains moderate (10-6 S·cm-1), ab initio molecular dynamics and maximum entropy (applied to neutron diffraction data) methods show that disorder leads to a 3D diffusion pathway, where Li atoms move thanks to a concerted mechanism. An understanding of the structure-property relationships is developed to determine the limiting factor governing lithium ion conductivity. This analysis, added to the strong step forward obtained in the determination of the dimensionality of diffusion, paves the way for accessing even higher conductivity in materials comprising an hcp anion arrangement.

16.
Inorg Chem ; 60(23): 18154-18167, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34751565

RESUMO

A newly reported compound, CuAgBiI5, is synthesized as powder, crystals, and thin films. The structure consists of a 3D octahedral Ag+/Bi3+ network as in spinel, but occupancy of the tetrahedral interstitials by Cu+ differs from those in spinel. The 3D octahedral network of CuAgBiI5 allows us to identify a relationship between octahedral site occupancy (composition) and octahedral motif (structure) across the whole CuI-AgI-BiI3 phase field, giving the ability to chemically control structural dimensionality. To investigate composition-structure-property relationships, we compare the basic optoelectronic properties of CuAgBiI5 with those of Cu2AgBiI6 (which has a 2D octahedral network) and reveal a surprisingly low sensitivity to the dimensionality of the octahedral network. The absorption onset of CuAgBiI5 (2.02 eV) barely changes compared with that of Cu2AgBiI6 (2.06 eV) indicating no obvious signs of an increase in charge confinement. Such behavior contrasts with that for lead halide perovskites which show clear confinement effects upon lowering dimensionality of the octahedral network from 3D to 2D. Changes in photoluminescence spectra and lifetimes between the two compounds mostly derive from the difference in extrinsic defect densities rather than intrinsic effects. While both materials show good stability, bulk CuAgBiI5 powder samples are found to be more sensitive to degradation under solar irradiation compared to Cu2AgBiI6.

17.
J Am Chem Soc ; 143(43): 18216-18232, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677973

RESUMO

Extended anionic frameworks based on condensation of polyhedral main group non-metal anions offer a wide range of structure types. Despite the widespread chemistry and earth abundance of phosphates and silicates, there are no reports of extended ultraphosphate anions with lithium. We describe the lithium ultraphosphates Li3P5O14 and Li4P6O17 based on extended layers and chains of phosphate, respectively. Li3P5O14 presents a complex structure containing infinite ultraphosphate layers with 12-membered rings that are stacked alternately with lithium polyhedral layers. Two distinct vacant tetrahedral sites were identified at the end of two distinct finite Li6O1626- chains. Li4P6O17 features a new type of loop-branched chain defined by six PO43- tetrahedra. The ionic conductivities and electrochemical properties of Li3P5O14 were examined by impedance spectroscopy combined with DC polarization, NMR spectroscopy, and galvanostatic plating/stripping measurements. The structure of Li3P5O14 enables three-dimensional lithium migration that affords the highest ionic conductivity (8.5(5) × 10-7 S cm-1 at room temperature for bulk), comparable to that of commercialized LiPON glass thin film electrolytes, and lowest activation energy (0.43(7) eV) among all reported ternary Li-P-O phases. Both new lithium ultraphosphates are predicted to have high thermodynamic stability against oxidation, especially Li3P5O14, which is predicted to be stable to 4.8 V, significantly higher than that of LiPON and other solid electrolytes. The condensed phosphate units defining these ultraphosphate structures offer a new route to optimize the interplay of conductivity and electrochemical stability required, for example, in cathode coatings for lithium ion batteries.

18.
Nat Commun ; 12(1): 5561, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548485

RESUMO

The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li3.3SnS3.3Cl0.7. The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing.

19.
Science ; 373(6558): 1017-1022, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446603

RESUMO

The thermal conductivity of crystalline materials cannot be arbitrarily low, as the intrinsic limit depends on the phonon dispersion. We used complementary strategies to suppress the contribution of the longitudinal and transverse phonons to heat transport in layered materials that contain different types of intrinsic chemical interfaces. BiOCl and Bi2O2Se encapsulate these design principles for longitudinal and transverse modes, respectively, and the bulk superlattice material Bi4O4SeCl2 combines these effects by ordering both interface types within its unit cell to reach an extremely low thermal conductivity of 0.1 watts per kelvin per meter at room temperature along its stacking direction. This value comes within a factor of four of the thermal conductivity of air. We demonstrated that chemical control of the spatial arrangement of distinct interfaces can synergically modify vibrational modes to minimize thermal conductivity.

20.
Inorg Chem ; 60(18): 14083-14095, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34463491

RESUMO

We report a new polymorph of lithium aluminum pyrophosphate, LiAlP2O7, discovered through a computationally guided synthetic exploration of the Li-Mg-Al-P-O phase field. The new polymorph formed at 973 K, and the crystal structure, solved by single-crystal X-ray diffraction, adopts the orthorhombic space group Cmcm with a = 5.1140(9) Å, b = 8.2042(13) Å, c = 11.565(3) Å, and V = 485.22(17) Å3. It has a three-dimensional framework structure that is different from that found in other LiMIIIP2O7 materials. It transforms to the known monoclinic form (space group P21) above ∼1023 K. Density functional theory (DFT) calculations show that the new polymorph is the most stable low-temperature structure for this composition among the seven known structure types in the AIMIIIP2O7 (A = alkali metal) families. Although the bulk Li-ion conductivity is low, as determined from alternating-current impedance spectroscopy and variable-temperature static 7Li NMR spectra, a detailed analysis of the topologies of all seven structure types through bond-valence-sum mapping suggests a potential avenue for enhancing the conductivity. The new polymorph exhibits long (>4 Å) Li-Li distances, no Li vacancies, and an absence of Li pathways in the c direction, features that could contribute to the observed low Li-ion conductivity. In contrast, we found favorable Li-site topologies that could support long-range Li migration for two structure types with modest DFT total energies relative to the new polymorph. These promising structure types could possibly be accessed from innovative doping of the new polymorph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...