Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(12): 105615, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465129

RESUMO

We are a network of Early Career Researchers (ECRs) and a Project Manager who are working on UKRI's "Physics of Life" grants which aim to merge ideas and techniques predominantly used in physics and apply them to biological questions. We have been collaborating since early 2021 to share research, experiences, and provide peer to peer support. Interdisciplinary projects are known for presenting challenges, bringing together disparate subjects and people with not only different knowledge bases, methods, and equipment but also varying ways of working and common languages. This has been the subject of commentary by researchers and funders from a management perspective, and we wanted to add to this discourse, using our experience to share the lessons and challenges we have encountered, from an ECR perspective.

2.
J Chem Phys ; 146(12): 124111, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28388112

RESUMO

We develop a new algorithm for the Brownian dynamics of soft matter systems that evolves time by spatially correlated Monte Carlo moves. The algorithm uses vector wavelets as its basic moves and produces hydrodynamics in the low Reynolds number regime propagated according to the Oseen tensor. When small moves are removed, the correlations closely approximate the Rotne-Prager tensor, itself widely used to correct for deficiencies in Oseen. We also include plane wave moves to provide the longest range correlations, which we detail for both infinite and periodic systems. The computational cost of the algorithm scales competitively with the number of particles simulated, N, scaling as N In N in homogeneous systems and as N in dilute systems. In comparisons to established lattice Boltzmann and Brownian dynamics algorithms, the wavelet method was found to be only a factor of order 1 times more expensive than the cheaper lattice Boltzmann algorithm in marginally semi-dilute simulations, while it is significantly faster than both algorithms at large N in dilute simulations. We also validate the algorithm by checking that it reproduces the correct dynamics and equilibrium properties of simple single polymer systems, as well as verifying the effect of periodicity on the mobility tensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...