Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 12-27, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38749379

RESUMO

A new catalyst has been developed that utilizes molybdenum oxide (MoO3)/nickel molybdenum oxide (NiMoO4) heterostructured nanorods coupled with Pt ultrafine nanoparticles for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) toward industrial-grade water splitting. This catalyst has been synthesized using a versatile approach and has shown to perform better than noble-metals catalysts, such as Pt/C and RuO2, at industrial-grade current level (≥1000 mA·cm-2). When used simultaneously as a cathode and anode, the proposed material yields 10 mA·cm-2 at a remarkably small cell voltage of 1.55 V and has shown extraordinary durability for over 50 h. Density functional theory (DFT) calculations have proved that the combination of MoO3 and NiMoO4 creates a metallic heterostructure with outstanding charge transfer ability. The DFT calculations have also shown that the excellent chemical coupling effect between the MoO3/NiMoO4 and Pt synergistically optimize the charge transfer capability and Gibbs free energies of intermediate species, leading to remarkably speeding up the reaction kinetics of water electrolysis.

2.
Phys Chem Chem Phys ; 26(16): 12869-12879, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38625375

RESUMO

Herein, first-principles density functional theory calculations have been employed to unravel the interfacial geometries (composition and stability), electronic properties (density of states and differential charge densities), and charge carrier transfers (work function and energy band alignment) of a TiO2(001)/FeS2(100) heterojunction. Analyses of the structure and electronic properties reveal the formation of strong interfacial Fe-O and Ti-S ionic bonds, which stabilize the interface with an adhesion energy of -0.26 eV Å-2. The work function of the TiO2(001)/FeS2(100) heterojunction is predicted to be much smaller than those of the isolated FeS2(100) and TiO2(001) layers, indicating that less energy will be needed for electrons to transfer from the ground state to the surface to promote photochemical reactions. The difference in the work function between the FeS2(100) and TiO2(001) heterojunction components caused an electron density rearrangement at the heterojunction interface, which induces an electric field that separates the photo-generated electrons and holes. Consistently, a staggered band alignment is predicted at the interface with the conduction band edge and the valence-band edge of FeS2 lying 0.37 and 2.62 eV above those of anatase. These results point to efficient charge carrier separation in the TiO2(001)/FeS2(100) heterojunction, wherein photoinduced electrons would transfer from the FeS2 to the TiO2 layer. The atomistic insights into the mechanism of enhanced charge separation and transfer across the interface rationalize the observed high photocatalytic activity of the mixed TiO2(001)/FeS2(100) heterojunction over the individual components.

3.
ACS Appl Mater Interfaces ; 16(17): 21746-21756, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631911

RESUMO

Considering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor Cu2NiSnS4 nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs. The absorption spectra demonstrate enhanced and broadened optical absorption in the ultraviolet-visible-near-infrared (UV-Vis-NIR) region, which is corroborated by cyclic voltammetry (CV) readings. CV measurements show type II staggered band alignment, with a conduction band offset (CBO) of 0.21 and 0.23 eV at the Au-CNTS/CdS and CNTS/CdS interface, respectively. Complementary first-principles density functional theory (DFT) calculations predict the formation of a stable Au-CNTS NHSs, with the Au nanoparticle transferring its electrons to the CNTS. Moreover, our interface analysis using ultrafast transient absorption experiments demonstrate that the Au-CNTS NHSs facilitates efficient transport and separation of photoexcited charge carriers when compared to pristine CNTS. The transient measurements further reveal a plasmonic electronic transfer from the Au nanoparticle to CNTS. Our advanced analysis and findings will prompt investigations into new functional materials and their photo/electrocatalysis and optoelectronic device applications in the future.

4.
Langmuir ; 40(13): 6884-6897, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517367

RESUMO

CdS, characterized by its comparatively narrow energy band gap (∼2.4 eV), is an appropriate material for prospective use as a photoanode in photoelectrochemical water splitting. Regrettably, it encounters several obstacles for practical and large-scale applications, including issues such as bulk carrier recombination and diminished conductivity. Here, we have tried to address these challenges by fabricating a novel photoelectrode (ZnO/CdS) composed of one-dimensional ZnO nanorods (NRs) decorated with two-dimensional CdS nanosheets (NSs). A facile two-step chemical method comprising electrodeposition along with chemical bath deposition is employed to synthesize the ZnO NRs, CdS NSs, and ZnO/CdS nanostructures. The prepared nanostructures have been investigated by UV-visible absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. The fabricated ZnO/CdS nanostructures have shown enhanced photoelectrochemical properties due to the improvement of the semiconductor junction surface area and thereby enhanced visible light absorption. The incorporation of CdS NSs has been further found to promote the rate of the charge separation and transfer process. Subsequently, the fabricated ZnO/CdS photoelectrodes achieved a photocurrent conversion efficiency 3 times higher than that of a planar ZnO NR photoanode and showed excellent performance under visible light irradiation. The highest applied bias photon-to-current conversion efficiency (% ABPE) of about ∼0.63% has been obtained for the sample with thicker CdS NSs on ZnO NRs with a photocurrent density of ∼1.87 mA/cm2 under AM 1.5 G illumination. The newly synthesized nanostructures further demonstrate that the full photovoltaic capacity of nanomaterials is yet to be exhausted.

5.
Phys Chem Chem Phys ; 25(42): 29050-29060, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860862

RESUMO

This study investigates the incorporation of Ba2+ at a low concentration into CsPbI2Br, resulting in the formation of mixed CsPb1-xBaxI2Br perovskite films. Photovoltaic devices utilizing these Ba-doped CsPbI2Br (Ba-CsPbI2Br) perovskite films achieved a higher stabilized power conversion efficiency of 14.07% compared to 11.60% for pure CsPbI2Br films. First-principles density functional theory calculations indicate that the improved device performance can be attributed to the efficient transport of conduction electrons across the interface between Ba-CsPbI2Br and the TiO2 electron transporting layer (ETL). The Ba-CsPbI2Br/TiO2 interface exhibits a type-II staggered band alignment with a smaller conduction band offset (CBO) of 0.25 eV, in contrast to the CsPbI2Br/TiO2 interface with a CBO of 0.48 eV. The reduced CBO at the Ba-CsPbI2Br/TiO2 interface diminishes the barrier for conduction electrons to transfer from the Ba-CsPbI2Br layer to the TiO2 layer, facilitating efficient charge transport.

6.
Inorg Chem ; 62(12): 4861-4871, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920788

RESUMO

Efficient and stable lead-free halide double perovskites (DPs) have attracted great attention for the future generation of electronic devices. Herein, we have developed a doping approach to incorporate Fe3+ ions into the Cs2NaBiCl6 crystal unit and reveal a crystallographic and optoelectronic study of the Cs2NaBi1-xFexCl6 double perovskite. We report a simple solid-state mechanochemical method that has a solvent-free, one-step, green chemistry approach for the synthesis of Cs2NaBi1-xFexCl6 phosphor. The analysis of powder X-ray diffraction (XRD) data determines the contraction of the lattice due to the incorporation of Fe3+ cations, and this effect is well supported by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and solid-state nuclear magnetic resonance spectroscopy (ss-NMR). The band gap is reduced with increasing Fe content owing to the strong overlap of the Fe-3d orbitals with Cl-3p orbitals and shift of the valence band maxima (VBM) toward higher energies, as confirmed by ultraviolet photoelectron spectroscopy (UPS) and density functional theory (DFT) analyses. Photoluminescence (PL) studies of Cs2NaBi1-xFexCl6 phosphors exhibit a large Stokes shift, broadband emission, and increased PL intensity more than ten times for 15% of Fe content phosphor with enhancement in the average decay lifetimes (up to 38 ns) compared to pristine Cs2NaBiCl6 DP. These results indicate that the transition of dark self-trapping of excitons (STEs) into bright STEs enhances yellow emission. XRD, UV, and thermo-gravimetric analysis (TGA) confirmed that the Cs2NaB1-xFexCl6 DPs have good structural and thermal stabilities. Our findings indicate that the doping of Fe3+ cations into the Cs2NaBiCl6 lattice is a constructive strategy to enhance significantly the optoelectronic properties of these phosphors.

7.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677718

RESUMO

The imino pyridine Schiff base cobalt(II) and nickel(II) complexes (C1 and C2) and their functionalised γ-Fe3O4 counterparts (Fe3O4@C1 and Fe3O4@C2) were synthesised and characterised using IR, elemental analysis, and ESI-MS for C1 and C2, and single crystal X-ray diffraction for C1, while the functionalised materials Fe3O4@C1 and Fe3O4@C2 were characterized using IR, XRD, SEM, TEM, EDS, ICP-OES, XPS and TGA. Complexes C1, C2 and the functionalised materials Fe3O4@C1 and Fe3O4@C2 were tested as catalysts for the selective transfer hydrogenation of cinnamaldehyde and all four pre-catalysts showed excellent catalytic activity. Complexes C1 and C2 acted as homogeneous catalysts with high selectivity towards the formation of hydrocinnamaldehyde (88.7% and 92.6%, respectively) while Fe3O4@C1 and Fe3O4@C2 acted as heterogeneous catalysts with high selectivity towards cinnamyl alcohol (89.7% and 87.7%, respectively). Through in silico studies of the adsorption energies, we were able to account for the different products formed using the homogeneous and the heterogeneous catalysts which we attribute to the preferred interaction of the C=C moiety in the substrate with the Ni centre in C2 (-0.79 eV) rather than the C=O (-0.58 eV).

8.
J Colloid Interface Sci ; 633: 886-896, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495810

RESUMO

Potassium-ion batteries (KIBs) are promising energy storage devices owing to their low cost, environmental-friendly, and excellent K+ diffusion properties as a consequence of the small Stoke's radius. The evaluation of cathode materials for KIBs, which are perhaps the most favorable substitutes to lithium-ion batteries, is of exceptional importance. Manganese dioxide (α-MnO2) is distinguished by its tunnel structures and plenty of electroactive sites, which can host cations without causing fundamental structural breakdown. As a result of the satisfactory redox kinetics and diffusion pathways of K+ in the structure, α-MnO2 nanorods cathode prepared through hydrothermal method, reversibly stores K+ at a fast rate with a high capacity and stability. It has a first discharge capacity of 142 mAh/g at C/20, excellent rate execution up to 5C, and a long cycling performance with a demonstration of moderate capacity retention up to 100 cycles. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) simulations confirm that the K+ intercalation/deintercalation occurs through 0.46 K movement between MnIV/MnIII redox pairs. First-principles density functional theory (DFT) calculations predict a diffusion barrier of 0.31 eV for K+ through the 1D tunnel of α-MnO2 electrode, which is low enough to promote faster electrochemical kinetics. The nanorod structure of α-MnO2 facilitates electron conductive connection and provides a strong electrode-electrolyte interface for the cathode, resulting in a very consistent and prevalent execution cathode material for KIBs.

9.
ACS Earth Space Chem ; 6(8): 2009-2023, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016758

RESUMO

Understanding how to catalytically break the C-H bond of aromatic molecules, such as polycyclic aromatic hydrocarbons (PAHs), is currently a big challenge and a subject of study in catalysis, astrochemistry, and planetary science. In the latter, the study of the breakdown reaction of PAHs on mineral surfaces is important to understand if PAHs are linked to prebiotic molecules in regions of star and planet formation. In this work, we employed a periodic density functional theory along with Grimme's D4 (DFT-D4) approach for studying the adsorption of a sample of PAHs (naphthalene, anthracene, fluoranthene, pyrene, coronene, and benzocoronene) and fullerene on the [010] forsterite surface and its defective surfaces (Fe-doped and Ni-doped surfaces and a MgO-Schottky vacancy) for their implications in catalysis and astrochemistry. On the basis of structural and binding energy analysis, large PAHs and fullerene present stronger adsorption on the pristine, Fe-doped, and Ni-doped forsterite surfaces than small PAHs. On a MgO-Schottky vacancy, parallel adsorption of the PAH leads to the chemisorption process (C-Si and/or C-O bonds), whereas perpendicular orientation of the PAH leads to the catalytic breaking of the aromatic C-H bond via a barrierless reaction. Spin density and charge analysis show that C-H dissociation is promoted by electron donation from the vacancy to the PAH. As a result of the undercoordinated Si and O atoms, the vacancy acts as a Frustrated Lewis Pair (FLP) catalyst. Therefore, a MgO-Schottky vacancy [010] forsterite surface proved to have potential catalytic activity for the activation of C-H bond in aromatic molecules.

10.
Phys Chem Chem Phys ; 24(25): 15271-15279, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35726647

RESUMO

In this work, we develop a photocatalyst wherein nitrogen and phosphorus co-doped carbon quantum dots are scaffolded onto TiO2 nanoparticles (NPCQD/TiO2), denoted as NPCT hereafter. The developed NPCT photocatalyst exhibits an enhanced visible light photocatalytic hydrogen production of 533 µmol h-1 g-1 compared to nitrogen doped CQD/TiO2 (478 µmol h-1 g-1), phosphorus doped CQD/TiO2 (451 µmol h-1 g-1) and pure CQD/TiO2 (427 µmol h-1 g-1) photocatalysts. The enhanced photocatalytic activity of the NPCT photocatalyst is attributed to the excellent synergy between NPCQDs and TiO2 nanoparticles, which results in the creation of virtual energy levels, a decrease in work function and suppressed recombination rates, thereby increasing the lifetime of photogenerated electrons. A detailed mechanism is proposed for the enhancement in visible light hydrogen production by the NPCT photocatalyst from the experimental results, Mott-Schottky plots and ultraviolet photoelectron spectroscopy results. Further, first-principles density functional theory (DFT) simulations are carried out which predict the decrease in the work function and band gap, and the increase in the density of states of NPCT as the factors responsible for the observed enhancement in visible light photocatalytic hydrogen production.

11.
Adv Mater ; 34(29): e2203204, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581144

RESUMO

Realizing photoactive and thermodynamically stable all-inorganic perovskite solar cells (PSCs) remains a challenging task within halide perovskite photovoltaic (PV) research. Here, a dual strategy for realizing efficient inorganic mixed halide perovskite PV devices based on a terbium-doped solar absorber, that is, CsPb1- x Tbx I2 Br, is reported, which undertakes a bulk and surface passivation treatment in the form of CsPb1- x Tbx I2 Br quantum dots, to maintain a photoactive γ-phase under ambient conditions and with significantly improved operational stability. Devices fabricated from these air-processed perovskite thin films exhibit an air-stable power conversion efficiency (PCE) that reaches 17.51% (small-area devices) with negligible hysteresis and maintains >90% of the initial efficiency when operating for 600 h under harsh environmental conditions, stemming from the combined effects of the dual-protection strategy. This approach is further examined within large-area PSC modules (19.8 cm2 active area) to realize 10.94% PCE and >30 days ambient stability, as well as within low-bandgap γ-CsPb0.95 Tb0.05 I2.5 Br0.5 (Eg  = 1.73 eV) materials, yielding 19.01% (18.43% certified) PCE.

12.
Front Chem ; 10: 835832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494625

RESUMO

Metal sulphides, including zinc sulphide (ZnS), are semiconductor photocatalysts that have been investigated for the photocatalytic degradation of organic pollutants as well as their activity during the hydrogen evolution reaction and water splitting. However, devising ZnS photocatalysts with a high overall quantum efficiency has been a challenge due to the rapid recombination rates of charge carriers. Various strategies, including the control of size and morphology of ZnS nanoparticles, have been proposed to overcome these drawbacks. In this work, ZnS samples with different morphologies were prepared from zinc and sulphur powders via a facile hydrothermal method by varying the amount of sodium borohydride used as a reducing agent. The structural properties of the ZnS nanoparticles were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques. All-electron hybrid density functional theory calculations were employed to elucidate the effect of sulphur and zinc vacancies occurring in the bulk as well as (220) surface on the overall electronic properties and absorption of ZnS. Considerable differences in the defect level positions were observed between the bulk and surface of ZnS while the adsorption of NaBH4 was found to be highly favourable but without any significant effect on the band gap of ZnS. The photocatalytic activity of ZnS was evaluated for the degradation of rhodamine B dye under UV irradiation and hydrogen generation from water. The ZnS nanoparticles photo-catalytically degraded Rhodamine B dye effectively, with the sample containing 0.01 mol NaBH4 being the most efficient. The samples also showed activity for hydrogen evolution, but with less H2 produced compared to when untreated samples of ZnS were used. These findings suggest that ZnS nanoparticles are effective photocatalysts for the degradation of rhodamine B dyes as well as the hydrogen evolution, but rapid recombination of charge carriers remains a factor that needs future optimization.

13.
ACS Appl Mater Interfaces ; 14(13): 15090-15102, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324159

RESUMO

We successfully report a liquid-liquid chemical reduction and hydrothermal synthesis of a highly stable columbite-tantalite electrocatalyst with remarkable hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance in acidic media. The reduced Fe0.79Mn0.21Nb0.16Ta0.84O6 (CTr) electrocatalyst shows a low overpotential of 84.23 mV at 10 mA cm-2 and 103.7 achieved at 20 mA cm-2 current density in situ for the HER and OER, respectively. The electrocatalyst also exhibited low Tafel slopes of 104.97 mV/dec for the HER and 57.67 mV/dec for the OER, verifying their rapid catalytic kinetics. The electrolyzer maintained a cell voltage of 1.5 V and potential-time stability close to that of Pt/C and RuO2. Complementary first-principles density functional theory calculations identify the Mn sites as most active sites on the Fe0.75Mn0.25Ta1.875Nb0.125O6 (100) surface, predicting a moderate Gibbs free energy of hydrogen adsorption (ΔGH* ≈ 0.08 eV) and a low overpotential of η = 0.47 V. The |ΔGMnH*| = 0.08 eV on the Fe0.75Mn0.25Ta1.875Nb0.125O6 (100) surface is similar to that of the well-known and highly efficient Pt catalyst (|ΔGPtH*| ≈ 0.09 eV).

14.
Phys Chem Chem Phys ; 23(46): 26482-26493, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806732

RESUMO

Zinc phosphides (ZnP2 and Zn3P2) are emerging absorber materials for photovoltaic applications owing to their abundancy and non-toxic nature. Herein, we provide a comprehensive characterisation of the surface structure, composition, stabilities, morphology, and electronic properties of both bare and hydrated/hydroxylated low-Miller index surfaces of ß-ZnP2 by means of density functional theory (DFT) calculations. Mechanistic insights into the fundamental aspects of water adsorption and dissociation, including the adsorption geometries, energetics, and structural parameters along the reaction path are systematically characterised. The stabilities of the surfaces under dry and wet conditions are discussed in detail and the predicted phase diagrams for the water adsorption are presented. Using calculated surface energies, we have derived the equilibrium morphology of the ß-ZnP2 nanocrystals under vacuum and upon hydration or hydroxylation. Atomic-level insights into the origin of the incipient oxidation of ß-ZnP2 surfaces are provided through analysis of Bader charges, which reveal that the Zn sites to which H2O and OH species are bound undergo oxidation due to the transfer of charge to the adsorbed species. Adsorption-induced changes to the electronic properties before and after hydration/hydroxylation were characterised by the work function and partial density of states. The results highlight the need for protection of ß-ZnP2 nanocrystals against possible oxidation in the presence of water through post-synthesis organic functionalisation.

15.
Nanoscale ; 13(44): 18441-18450, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34751695

RESUMO

Zinc phosphide (Zn3P2) is an ideal absorber candidate for solar cells thanks to its direct bandgap, earth-abundance, and optoelectronic characteristics, albeit it has been insufficiently investigated due to limitations in the fabrication of high-quality material. It is possible to overcome these factors by obtaining the material as nanostructures, e.g. via the selective area epitaxy approach, enabling additional strain relaxation mechanisms and minimizing the interface area. We demonstrate that Zn3P2 nanowires grow mostly defect-free when growth is oriented along the [100] and [110] of the crystal, which is obtained in nanoscale openings along the [110] and [010] on InP(100). We detect the presence of two stable rotated crystal domains that coexist in the structure. They are due to a change in the growth facet, which originates either from the island formation and merging in the initial stages of growth or lateral overgrowth. These domains have been visualized through 3D atomic models and confirmed with image simulations of the atomic scale electron micrographs. Density functional theory simulations describe the rotated domains' formation mechanism and demonstrate their lattice-matched epitaxial relation. In addition, the energies of the shallow states predicted closely agree with transition energies observed by experimental studies and offer a potential origin for these defect transitions. Our study represents an important step forward in the understanding of Zn3P2 and thus for the realisation of solar cells to respond to the present call for sustainable photovoltaic technology.

16.
Chem Mater ; 33(6): 1983-1993, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33840893

RESUMO

Ternary Cu2SnS3 (CTS) is an attractive nontoxic and earth-abundant absorber material with suitable optoelectronic properties for cost-effective photoelectrochemical applications. Herein, we report the synthesis of high-quality CTS nanoparticles (NPs) using a low-cost facile hot injection route, which is a very simple and nontoxic synthesis method. The structural, morphological, optoelectronic, and photoelectrochemical (PEC) properties and heterojunction band alignment of the as-synthesized CTS NPs have been systematically characterized using various state-of-the-art experimental techniques and atomistic first-principles density functional theory (DFT) calculations. The phase-pure CTS NPs confirmed by X-ray diffraction (XRD) and Raman spectroscopy analyses have an optical band gap of 1.1 eV and exhibit a random distribution of uniform spherical particles with size of approximately 15-25 nm as determined from high-resolution transmission electron microscopy (HR-TEM) images. The CTS photocathode exhibits excellent photoelectrochemical properties with PCE of 0.55% (fill factor (FF) = 0.26 and open circuit voltage (Voc) = 0.54 V) and photocurrent density of -3.95 mA/cm2 under AM 1.5 illumination (100 mW/cm2). Additionally, the PEC activities of CdS and ZnS NPs are investigated as possible photoanodes to create a heterojunction with CTS to enhance the PEC activity. CdS is demonstrated to exhibit a higher current density than ZnS, indicating that it is a better photoanode material to form a heterojunction with CTS. Consistently, we predict a staggered type-II band alignment at the CTS/CdS interface with a small conduction band offset (CBO) of 0.08 eV compared to a straddling type-I band alignment at the CTS/ZnS interface with a CBO of 0.29 eV. The observed small CBO at the type-II band aligned CTS/CdS interface points to efficient charge carrier separation and transport across the interface, which are necessary to achieve enhanced PEC activity. The facile CTS synthesis, PEC measurements, and heterojunction band alignment results provide a promising approach for fabricating next-generation Cu-based light-absorbing materials for efficient photoelectrochemical applications.

17.
Phys Chem Chem Phys ; 23(15): 9553-9560, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885069

RESUMO

Cu2ZnGeSe4 (CZGSe) is a promising earth-abundant and non-toxic semiconductor material for large-scale thin-film solar cell applications. Herein, we have employed a joint computational and experimental approach to characterize and assess the structural, optoelectronic, and heterojunction band offset and alignment properties of a CZGSe solar absorber. The CZGSe films were successfully prepared using DC-sputtering and e-beam evaporation systems and confirmed by XRD and Raman spectroscopy analyses. The CZGSe films exhibit a bandgap of 1.35 eV, as estimated from electrochemical cyclic voltammetry (CV) measurements and validated by first-principles density functional theory (DFT) calculations, which predicts a bandgap of 1.38 eV. A fabricated device based on the CZGSe as a light absorber and CdS as a buffer layer yields power conversion efficiency (PCE) of 4.4% with VOC of 0.69 V, FF of 37.15, and Jsc of 17.12 mA cm-2. Therefore, we suggest that interface and band offset engineering represent promising approaches to improve the performance of CZGSe devices by predicting a type-II staggered band alignment with a small conduction band offset of 0.18 eV at the CZGSe/CdS interface.

18.
ACS Energy Lett ; 6(2): 778-788, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33829109

RESUMO

Mixed-halide CsPbI2Br perovskite is promising for efficient and thermally stable all-inorganic solar cells; however, the use of conventional antisolvent methods and additives-based hole-transporting layers (HTLs) currently hampers progress. Here, we have employed hot-air-assisted perovskite deposition in ambient condition to obtain high-quality photoactive CsPbI2Br perovskite films and have extended stable device operation using metal cation doping and dopant-free hole-transporting materials. Density functional theory calculations are used to study the structural and optoelectronic properties of the CsPbI2Br perovskite when it is doped with metal cations Eu2+ and In3+. We experimentally incorporated Eu2+ and In3+ metal ions into CsPbI2Br films and applied dopant-free copper(I) thiocyanate (CuSCN) and poly(3-hexylthiophene) (P3HT)-based materials as low-cost hole transporting layers, leading to record-high power conversion efficiencies of 15.27% and 15.69%, respectively, and a retention of >95% of the initial efficiency over 1600 h at 85 °C thermal stress.

19.
J Phys Chem A ; 125(13): 2770-2781, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33784098

RESUMO

Density functional theory (DFT) has provided deep atomic-level insights into the adsorption behavior of aromatic molecules on solid surfaces. However, modeling the surface phenomena of large molecules on mineral surfaces with accurate plane wave methods (PW) can be orders of magnitude more computationally expensive than localized atomic orbitals (LCAO) methods. In the present work, we propose a less costly approach based on the DFT-D4 method (PBE-D4), using LCAO, to study the interactions of aromatic molecules with the {010} forsterite (Mg2SiO4) surface for their relevance in astrochemistry. We studied the interaction of benzene with the pristine {010} forsterite surface and with transition-metal cations (Fe2+ and Ni2+) using PBE-D4 and a vdW-inclusive density functional (Dion, Rydberg, Schröder, Langreth, and Lundqvist (DRSLL)) with LCAO methods. PBE-D4 shows good agreement with coupled-cluster methods (CCSD(T)) for the binding energy trend of cation complexes and with PW methods for the binding energy of benzene on the forsterite surface with a difference of about 0.03 eV. The basis set superposition error (BSSE) correction is shown to be essential to ensure a correct estimation of the binding energies even when large basis sets are employed for single-point calculations of the optimized structures with smaller basis sets. We also studied the interaction of naphthalene and benzocoronene on pristine and transition-metal-doped {010} forsterite surfaces as a test case for PBE-D4. Yielding results that are in good agreement with the plane wave methods with a difference of about 0.02-0.17 eV, the PBE-D4 method is demonstrated to be effective in unraveling the binding structures and the energetic trends of aromatic molecules on pristine and transition-metal-doped forsterite mineral surfaces. Furthermore, PBE-D4 results are in good agreement with its predecessor PBE-D3(BJM) and with the vdW-inclusive density functionals, as long as transition metals are not involved. Hence, PBE-D4/CP-DZP has been proven to be a robust theory level to study the interaction of aromatic molecules on mineral surfaces.

20.
ACS Appl Mater Interfaces ; 13(9): 11433-11441, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33630568

RESUMO

Sodium-ion batteries (SIBs) can develop cost-effective and safe energy storage technology for substantial energy storage demands. In this work, we have developed manganese oxide (α-MnO2) nanorods for SIB applications. The crystal structure, which is crucial for high-performance energy storage, is examined systematically for the metal oxide cathode. The intercalation of sodium into the α-MnO2 matrix was studied using the theoretical density functional theory (DFT) studies. The DFT studies predict Na ions' facile diffusion kinetics through the MnO2 lattice with an attractively low diffusion barrier (0.21 eV). When employed as a cathode material for SIBs, MnO2 showed a moderate capacity (109 mAh·g-1 at C/20 current rate) and superior life cyclability (58.6% after 800 cycles) in NaPF6/EC+DMC (5% FEC) electrolyte. It shows a much higher capacity of 181 mAh·g-1 (C/20 current rate) in NaClO4/PC (5% FEC) electrolyte, though it suffers fast capacity fading (11.5% after 800 cycles). Our findings show that high crystallinity and hierarchical nanorod morphology of the MnO2 are responsible for better cycling performance in conjunction with fast and sustained charge-discharge behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...