Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
J Clin Med ; 13(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892988

RESUMO

Background: The rising incidence of Basal Cell Carcinoma (BCC), especially among individuals with significant sun exposure, underscores the need for effective and minimally invasive treatment alternatives. Traditional surgical approaches, while effective, often result in notable cosmetic and functional limitations, particularly for lesions located on the face. This study explores High-Intensity Focused Ultrasound (HIFU) as a promising, non-invasive treatment option that aims to overcome these challenges, potentially revolutionizing BCC treatment by offering a balance between efficacy and cosmetic outcomes. Methods: Our investigation enrolled 8 patients, presenting a total of 15 BCC lesions, treated with a 20 MHz HIFU device. The selection of treatment parameters was precise, utilizing probe depths from 0.8 mm to 2.3 mm and energy settings ranging from 0.7 to 1.3 Joules (J) per pulse, determined by the lesion's infiltration depth as assessed via pre-procedure ultrasonography. A key component of our methodology included dermatoscopic monitoring, which allowed for detailed observation of the lesions' response to treatment over time. Patient-reported outcomes and satisfaction levels were systematically recorded, providing insights into the comparative advantages of HIFU. Results: Initial responses after HIFU treatment included whitening and edema, indicative of successful lesion ablation. Early post-treatment observations revealed minimal discomfort and quick recovery, with crust formation resolving within two weeks for most lesions. Over a period of three to six months, patients reported significant improvement, with lesions becoming lighter and blending into the surrounding skin, demonstrating effective and aesthetically pleasing outcomes. Patient satisfaction surveys conducted six months post-treatment revealed high levels of satisfaction, with 75% of participants reporting very high satisfaction due to minimal scarring and the non-invasive nature of the procedure. No recurrences of BCC were noted, attesting to the efficacy of HIFU as a treatment option. Conclusions: The findings from this study confirm that based on dermoscopy analysis, HIFU is a highly effective and patient-preferred non-invasive treatment modality for Basal Cell Carcinoma. HIFU offers a promising alternative to traditional surgical and non-surgical treatments, reducing the cosmetic and functional repercussions associated with BCC management. Given its efficacy, safety, and favorable patient satisfaction scores, HIFU warrants further investigation and consideration for broader clinical application in the treatment of BCC, potentially setting a new standard in dermatologic oncology care. This work represents a pilot study that is the first to describe the use of HIFU in the treatment of BCC.

2.
Aging Dis ; 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38913049

RESUMO

As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.

3.
Theriogenology ; 224: 163-173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776704

RESUMO

Global contraction of biodiversity pushed most members of Felidae into threatened or endangered list except the domestic cat (Felis catus) thence preferred as the best model for conservation studies. One of the emerging conservation strategies is vitrification of ovarian tissue which is field-friendly but not yet standardized. Thus, our main goal was to establish a suitable vitrification protocol for feline ovarian tissue in field condition. Feline ovarian tissue fragments were punched with biopsy punch (1.5 mm diameter) and divided into 4 groups. Group 1 was fresh control (Fr), while the other three were exposed to 3 vitrification protocols (VIT_CT, VIT_RT1 and VIT_RT2). VIT_CT involved two step equilibrations in solutions containing dimethyl sulfoxide (DMSO) and ethylene glycol (EG) for 10 min each at 4 °C. VIT_RT1 involved three step equilibration in solutions containing DMSO, EG, polyvinylpyrrolidone and sucrose for 14 min in total at room temperature, while in VIT_RT2 all conditions remained the same as in VIT_RT1 except equilibration timing which was reduced by half. After vitrification and warming, fragments were morphologically evaluated and then cultured for six days. Subsequently, follicular morphology, cellular proliferation (expression of Ki-67, MCM-7) and apoptosis (expression of caspase-3) were evaluated, and data obtained were analysed using generalised linear mixed model and chi square tests. Proportions of intact follicles were higher in Fr (P = 0.0001) and VIT_RT2 (P = 0.0383) in comparison to the other protocols both post warming and after the six-day culture. Generally, most follicles remained at primordial state which was confirmed by the low expression of Ki-67, MCM-7 markers. In conclusion, VIT_RT2 protocol, which has lower equilibration time at room temperature has proven superior thus recommended for vitrification of feline ovarian tissue.


Assuntos
Criopreservação , Ovário , Vitrificação , Animais , Gatos , Feminino , Criopreservação/veterinária , Criopreservação/métodos , Temperatura
4.
Sci Rep ; 14(1): 12546, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822068

RESUMO

Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.


Assuntos
Exocitose , Antígenos Específicos de Melanoma , Melanoma , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Melanoma/imunologia , Linhagem Celular Tumoral , Antígenos Específicos de Melanoma/metabolismo , Antígenos Específicos de Melanoma/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética
5.
Nanomaterials (Basel) ; 14(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535679

RESUMO

Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.

6.
Cell Biosci ; 14(1): 30, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444042

RESUMO

Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.

7.
Adv Clin Exp Med ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506416

RESUMO

BACKGROUND: Recent studies have indicated that the skin lymphatic system and interstitium may play a role in the pathophysiology of arterial hypertension (AH). OBJECTIVES: We aimed to determine whether the set of pathway parameters described previously in rodents would allow for the distinction between hypertensive and normotensive patients. MATERIAL AND METHODS: Molecular and histopathological parameters from the skin and blood of patients with AH (AH group, n = 53), resistant AH (RAH group, n = 32) and control (C group, n = 45) were used, and a statistical multivariate bootstrap methodology combining partial least squares-discriminant analysis (PLS-DA) and selectivity ratio (SR) were applied. RESULTS: The C vs RAH model presented the best prediction performance (AUC test = 0.90) and had a sensitivity and specificity of 73.68% and 83.33%, respectively. However, the parameters selected for the C vs AH group model were the most important for the pathway described in the rodent model, i.e., greater density of the skin lymphatic vessels (D2-40 expression) and greater number of macrophages (CD68 expression), higher expression of the messenger ribonucleic acid (mRNA) of nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGFC) and podoplanin (PDPN) in the skin, greater concentration of hyaluronic acid (HA) in the skin, and lower serum concentration of VEGF-C. CONCLUSIONS: Our study suggests that the NFAT5/VEGF-C/lymphangiogenesis pathway, previously described in rodent studies, may also be present in human HA. Further experiments are needed to confirm our findings.

8.
Cancers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539459

RESUMO

This study investigates the impact of bisphosphonate therapy on the stomatognathic system in 80 patients with cancer of the breast and prostate with bone metastases. Bisphosphonates are integral for managing skeletal complications in these malignancies but are associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ), affecting 0.8-18.5% of patients. BRONJ manifests with pain, neuropathy, tissue swelling, mucosal ulceration, tooth mobility, and abscesses, yet its pathogenesis remains elusive, complicating risk prediction. The research employed comprehensive dental and radiological evaluations. Dental status was assessed using DMFT and OHI-S indices, Eichner's classification, and clinical periodontal measurements like the pocket depth (PD), clinical attachment loss (CAL), and modified Sulcus Bleeding Index (mSBI). A radiological analysis included panoramic X-rays for radiomorphometric measurements and TMJ lateral radiographs. Results indicated a significant decline in oral hygiene in patients with cancer after bisphosphonate therapy, marked by increased DMFT and OHI-S scores. Periodontal health also showed deterioration, with increased PD and CAL readings. The incidence of BRONJ symptoms was noted, although exact figures are not quantified in this abstract. The study also revealed changes in radiomorphometric parameters, suggesting bisphosphonates' impact on bone density and structure. No substantial alterations were observed in TMJ function, indicating a need for extended observation to understand bisphosphonates' long-term effects on the stomatognathic system. These findings highlight the importance of continuous dental monitoring and prophylaxis in patients undergoing bisphosphonate therapy. Implementing meticulous oral care protocols is essential for mitigating BRONJ risk and managing the complex oral health challenges in patients with cancer.

9.
Anim Reprod Sci ; 263: 107431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412765

RESUMO

For domestic cats ovaries, recommended cold-storage limit is 24 h in Phosphate Buffered Saline (PBS) or Dulbecco`s PBS (DPBS). Here, we attempted to verify wheatear cat ovaries may benefit from more complex solutions during prolonged cold-storage (>24 h). First, the preservation capabilities of extracellular (SP+), intracellular (UW) solutions and DPBS supplemented with glutathione (DPBS+GSH) were compared using ovary fragments from the same ovary (n=10). Intact ovary stored in DPBS served as a control. Ovaries were kept at 4 °C for 48 h, and 72 h. In the second experiment, first ovary was stored in DPBS, second in SP+ or UW solution for 48 h (n = 12). Ovaries pairs stored in DPBS for 24 h served as a control (n=8). Tissue samples were evaluated directly after cold-storage and after following 24 h in vitro culture. Ovarian follicle morphology, apoptosis rates (cleaved caspase-3, TUNEL), and follicular growth activation (Ki-67) were assessed. Ovary fragmentation impaired follicular morphology preservation upon cold-storage comparing to intact ovary. However, ovarian fragments stored in UW for 48 h and in SP+ for 72 h presented better morphology than DPBS+GSH group. Comparison of intact ovaries cold-storage for 48 h showed that SP+ provided superior follicular morphology over DPBS, and it was comparable to the outcome of 24-hour storage. No follicular activation after in vitro culture was observed. Nevertheless, tissue culture increased considerably caspase-3 cleavage and TUNEL detection. The ovary fragmentation prior to cold-storage is not recommended in domestic cats. Replacement of DPBS with SP+ solution for whole ovary and UW solution for ovarian tissue fragments improves follicular structure preservation during 48-hour cold-storage.


Assuntos
Soluções para Preservação de Órgãos , Ovário , Feminino , Animais , Gatos , Ovário/fisiologia , Caspase 3 , Folículo Ovariano/fisiologia , Glutationa , Rafinose , Alopurinol , Insulina , Adenosina
10.
Front Oncol ; 14: 1332362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347840

RESUMO

This case study documents an extraordinary disease progression in a 70-year-old patient diagnosed with metastatic melanoma. The patient's condition advanced to an unusual manifestation characterized by generalized melanosis and melanuria, a rare and foreboding complication of metastatic melanoma. The clinical presentation involved rapid-onset skin darkening, primarily affecting the face and torso, along with darkened urine, marking the onset of melanuria. Despite extensive diagnostic evaluations, including abdominal ultrasound, neck ultrasound, thoracic CT scans, and endoscopic examinations, the exact metastatic sites remained elusive, demonstrating the diagnostic challenges associated with this condition. Laboratory tests revealed abnormal hematological and biochemical markers, along with elevated S100 protein levels, indicating disease progression. The patient underwent a surgical skin biopsy that confirmed the diagnosis of metastatic melanoma, leading to a multidisciplinary approach to treatment. Following this, the patient-initiated chemotherapy with dacarbazine (DTIC). Regrettably, this was necessitated by the absence of reimbursement for BRAF and MEK inhibitors as well as immunotherapy, and it subsequently led to rapid disease progression and a decline in the patient's clinical condition. The patient's condition further complicated with erysipelas and increased distress, ultimately leading to their unfortunate demise. This case highlights the aggressive nature of generalized melanosis, characterized by a rapid clinical course, substantial pigmentation, and limited response to conventional chemotherapy. Importantly, the patient had a BRAF mutation, emphasizing the urgency of exploring alternative treatment strategies. Patients with a BRAF mutation are excellent candidates for BRAF and MEK inhibitor treatment, potentially allowing them to extend their lifespan if this therapy were available. The challenges encountered in diagnosing, managing, and treating this aggressive form of metastatic melanoma underline the need for early detection, tailored therapeutic approaches, and ongoing research efforts to improve patient outcomes in such cases.

11.
Cells ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334666

RESUMO

A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.


Assuntos
Aneurisma da Aorta Abdominal , Masculino , Humanos , Feminino , Idoso , Aneurisma da Aorta Abdominal/metabolismo , Aorta/metabolismo , Citocinas/metabolismo , Fenótipo , Apoptose/genética
12.
Cells ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334669

RESUMO

Disorders of cardiomyocyte metabolism play a crucial role in many cardiovascular diseases, such as myocardial infarction, heart failure and ischemia-reperfusion injury. In myocardial infarction, cardiomyocyte metabolism is regulated by mitochondrial changes and biogenesis, which allows energy homeostasis. There are many proteins in cells that regulate and control metabolic processes. One of them is irisin (Ir), which is released from the transmembrane protein FNDC5. Initial studies indicated that Ir is a myokine secreted mainly by skeletal muscles. Further studies showed that Ir was also present in various tissues. However, its highest levels were observed in cardiomyocytes. Ir is responsible for many processes, including the conversion of white adipose tissue (WAT) to brown adipose tissue (BAT) by increasing the expression of thermogenin (UCP1). In addition, Ir affects mitochondrial biogenesis. Therefore, the levels of FNDC5/Ir in the blood and myocardium may be important in cardiovascular disease. This review discusses the current knowledge about the role of FNDC5/Ir in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Humanos , Fibronectinas/metabolismo , Doenças Cardiovasculares/metabolismo , Tecido Adiposo Branco/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Infarto do Miocárdio/metabolismo
13.
Sci Rep ; 14(1): 3778, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355711

RESUMO

Our research found that vitamin D3 (VD3) treatment increased lung metastasis in mice with 4T1 murine breast cancer (BC). This study aims to investigate the impact of VD3 on the activation of tumor-associated macrophages (TAMs) in BC. Mice bearing 4T1, E0771, 67NR BC cells, and healthy mice, were fed diets with varying VD3 contents (100-deficient, 1000-normal, and 5000 IU/kg-elevated). Some mice in the 1000 and 100 IU/kg groups received calcitriol. We studied bone metastasis and characterized TAMs and bone marrow-derived macrophages (BMDMs). 4T1 cells had higher bone metastasis potential in the 5000 IU/kg and calcitriol groups. In the same mice, an elevated tumor osteopontin level and M2 polarization of TAMs (MHCIIlow CD44high phenotype) were observed. Gene expression analysis confirmed M2 polarization of 4T1 (but not 67NR) TAMs and BMDMs, particularly in the 100 IU + cal group (increased Mrc1, Il23, and Il6). This polarization was likely due to COX-2/PGE2 induction in 4T1 calcitriol-treated cells, leading to increased proinflammatory cytokines like IL-6 and IL-23. Future studies will explore COX-2/PGE2 as a primary mediator of calcitriol-stimulated inflammation in the BC microenvironment, especially relevant for BC patients with VD3 deficiency and supplementation.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Animais , Camundongos , Feminino , Citocinas/metabolismo , Calcitriol/farmacologia , Macrófagos Associados a Tumor/metabolismo , Ciclo-Oxigenase 2/genética , Glândulas Mamárias Humanas/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Microambiente Tumoral
14.
BMC Cancer ; 24(1): 209, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360633

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Despite the well-known in vitro antitumoral effect of vitamin D3 (VD3), its impact on breast CAFs is almost unknown. In this study, we analyzed the ex vivo effects of calcitriol on CAFs isolated from breast cancer tissues. METHODS: CAFs were cultured with 1 and 10 nM calcitriol and their phenotype; gene expression, protein expression, and secretion were assessed. Calcitriol-treated CAFs-conditioned media (CM) were used to analyze the effect of CAFs on the migration and protein expression of MCF-7 and MDA-MB-231 cells. RESULTS: Tumor tissues from VD3-deficient patients exhibited lower levels of ß-catenin and TGFß1, along with higher levels of CYP24A1 compared to VD3-normal patients. In VD3-deficient patients, CAF infiltration was inversely associated with CYP24A1 levels and positively correlated with OPN levels. Calcitriol diminished CAFs' viability, but this effect was weaker in premenopausal and VD3-normal patients. Calcitriol reduced mRNA expression of CCL2, MMP9, TNC, and increased PDPN, SPP1, and TIMP1. It also decreased the secretion of CCL2, TNC, and the activity of MMP-2, while increasing cellular levels of TIMP1 in CAFs from all patient groups. In nonmetastatic and postmenopausal patients, PDPN surface expression increased, and CAFs CM from these groups decreased MCF-7 cell migration after ex vivo calcitriol treatment. In premenopausal and VD3-deficient patients, calcitriol reduced IDO1 expression in CAFs. Calcitriol-treated CAFs CM from these patients decreased OPN expression in MCF-7 and/or MDA-MB-231 cells. However, in premenopausal patients, calcitriol-treated CAFs CM also decreased E-cadherin expression in both cell lines. CONCLUSION: The effects of calcitriol on breast CAFs, both at the gene and protein levels, are complex, reflecting the immunosuppressive or procancer properties of CAFs. The anticancer polarization of CAFs following ex vivo calcitriol treatment may result from decreased CCL2, TNC (gene and protein), MMP9, and MMP-2, while the opposite effect may result from increased PDPN, TIMP1 (gene and protein), and SPP1. Despite these multifaceted effects of calcitriol on molecule expression, CAFs' CMs from nonmetastatic and postmenopausal patients treated ex vivo with calcitriol decreased the migration of MCF-7 cells.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Feminino , Fibroblastos Associados a Câncer/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Colecalciferol , Calcitriol/farmacologia , Fibroblastos/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Microambiente Tumoral/genética
15.
Stem Cell Rev Rep ; 20(4): 967-979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372877

RESUMO

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.


Assuntos
Transição Epitelial-Mesenquimal , Células Neoplásicas Circulantes , Células-Tronco Neoplásicas , Neovascularização Patológica , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Neovascularização Patológica/patologia , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Fenótipo , Proliferação de Células/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
16.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396961

RESUMO

Excessive consumption of food rich in saturated fatty acids and carbohydrates can lead to metabolic disturbances and cardiovascular disease. Hyperlipidemia is a significant risk factor for acute cardiac events due to its association with oxidative stress. This leads to arterial wall remodeling, including an increase in the thickness of the intima media complex (IMT), and endothelial dysfunction leading to plaque formation. The decreased nitric oxide synthesis and accumulation of lipids in the wall result in a reduction in the vasodilating potential of the vessel. This study aimed to establish a clear relationship between markers of endothelial dysfunction and the activity of repair enzymes in cardiac tissue from a pig model of early atherosclerosis. The study was conducted on 28 female Polish Landrace pigs, weighing 40 kg (approximately 3.5 months old), which were divided into three groups. The control group (n = 11) was fed a standard, commercial, balanced diet (BDG) for 12 months. The second group (n = 9) was fed an unbalanced, high-calorie Western-type diet (UDG). The third group (n = 8) was fed a Western-type diet for nine months and then switched to a standard, balanced diet (regression group, RG). Control examinations, including blood and urine sampling, were conducted every three months under identical conditions with food restriction for 12 h and water restriction for four hours before general anesthesia. The study analyzed markers of oxidative stress formed during lipid peroxidation processes, including etheno DNA adducts, ADMA, and NEFA. These markers play a crucial role in reactive oxygen species analysis in ischemia-reperfusion and atherosclerosis in mammalian tissue. Essential genes involved in oxidative-stress-induced DNA demethylation like OGG1 (8-oxoguanine DNA glycosylase), MPG (N-Methylpurine DNA Glycosylase), TDG (Thymine-DNA glycosylase), APEX (apurinic/apirymidinic endodeoxyribonuclease 1), PTGS2 (prostaglandin-endoperoxide synthase 2), and ALOX (Arachidonate Lipoxygenase) were measured using the Real-Time RT-PCR method. The data suggest that high oxidative stress, as indicated by TBARS levels, is associated with high levels of DNA repair enzymes and depends on the expression of genes involved in the repair pathway. In all analyzed groups of heart tissue homogenates, the highest enzyme activity and gene expression values were observed for the OGG1 protein recognizing the modified 8oxoG. Conclusion: With the long-term use of an unbalanced diet, the levels of all DNA repair genes are increased, especially (significantly) Apex, Alox, and Ptgs, which strongly supports the hypothesis that an unbalanced diet induces oxidative stress that deregulates DNA repair mechanisms and may contribute to genome instability and tissue damage.


Assuntos
Aterosclerose , DNA Glicosilases , Timina DNA Glicosilase , Feminino , Animais , Suínos , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Aterosclerose/genética , Aterosclerose/metabolismo , Estresse Oxidativo , Adutos de DNA , Timina DNA Glicosilase/metabolismo , Dano ao DNA , Mamíferos/metabolismo
17.
J Clin Med ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398246

RESUMO

Background: High-Intensity Focused Ultrasound (HIFU) has emerged as a precise and non-invasive modality for tissue ablation and healing. This study presents a detailed dermoscopic analysis of skin healing post-High-Intensity Focused Ultrasound (HIFU) treatment, focusing on common benign skin lesions, such as seborrheic keratosis, sebaceous hyperplasia, vascular lesions, and sebaceous nevi. Methods: Prior to HIFU treatment, a comprehensive assessment was conducted, integrating ultrasound scanning and clinical evaluations. The TOOsonix System ONE-M was employed for HIFU treatments, with parameters tailored to each lesion type. Results: A common pattern observed across all lesions includes initial whitening post treatment, followed by scab formation and the development of a pink area with reparative vessels. This study, however, highlights distinct differences in fibrosis patterns and healing timelines across different lesion types. Each lesion type exhibited unique fibrosis patterns post treatment. Flatter variants of seborrheic keratosis healed within a month, displaying hypopigmentation and reparative vessels, alongside a distinct lattice fibrosis pattern in more verrucous forms, which took about two months to heal. Sebaceous hyperplasia, characterized by rapid healing within three weeks, demonstrated fibrosis with pink areas and perpendicular white lines, concluding with a slight depression. Vascular lesions varied in healing time based on depth, with superficial ones showing whitening and crust formation, while deeper lesions had vessel occlusion and size reduction accompanied by concentric fibrotic bands. Sebaceous nevi presented the longest healing duration of three months, characterized by amorphous white-gray structures, scab formation, and the emergence of pink areas with branching vessels, leading to clear skin with reduced white lines. Conclusions: in conclusion, this meticulous clinical evaluation highlights the unique healing characteristics and timelines for each skin lesion type treated with HIFU. These insights are invaluable for optimizing follow-up assessments, identifying potential complications, and refining treatment protocols. By providing detailed insights into the healing timelines and patterns for different types of lesions, patients can be better informed about their post-treatment journey.

18.
Geroscience ; 46(1): 71-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37646904

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Endocitose
19.
Front Vet Sci ; 10: 1258247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076555

RESUMO

The tumor microenvironment is considered one of the main players in cancer development and progression and may influence the behavior of cancer cells. Periostin (POSTN) is an extracellular matrix protein, and its main functions are induction of fibrillogenesis, fibroblastic cell proliferation and migration, enhancing regeneration in normal tissue, and promoting metastasis in case of neoplasia. POSTN has already been studied in humans in several normal tissues, inflammatory processes, and neoplasms, revealing an important role in tumor progression in various types of cancer, such as colon, lung, head and neck, breast, ovarian, and prostate. In these latter, high levels of POSTN are usually associated with a more aggressive tumor behavior, tumor advanced stages, and poor prognosis, while in human bladder urothelial carcinoma (BUC), unlike in most tumors, POSTN expression seems to be downregulated. The expression of this marker has been poorly investigated in veterinary medicine; thus, this study aimed to immunohistochemically investigate the presence and the intensity of POSTN expression in canine BUCs and to determine a possible relationship between POSTN expression and histopathological features such as mitotic count and muscular and vascular invasions. For the present retrospective study, archived samples from 45 canine BUCs and 6 non-neoplastic canine bladders were considered for histological evaluation and immunohistochemical examination for the expression of POSTN. POSTN expression was semi-quantitatively assessed considering both the percentage of the neoplastic stroma positive for POSTN and the intensity of the immunohistochemical labeling. Histologically, 38 out of 45 tumors were papillary and 7 out of 45 were non-papillary. All tumors were infiltrating, being that 21 were muscle-invasive, and a significant correlation between this feature and vascular invasion emerged (P = 0.0001). In normal bladder tissue, as reported in humans, a thick and strongly positive belt of POSTN was visible, and in canine BUCs, stating that the expression is comparable with human benign as well as malignant bladder tissue, a general decrease in POSTN expression was observed except for a strongly labeled ring of POSTN observed around some neoplastic nodules infiltrating the muscle layer. Moreover, POSTN expression and mitotic count were significatively inversely correlated (P = 0.0015). The fact that POSTN protein is less expressed in urothelial carcinomas than in the normal bladder supports what was reported in human BUCs and, together with the negative correlation between mitotic count and protein expression that emerged in the present retrospective study, encourages further prospective follow-up studies to verify the possible role of POSTN in canine BUCs as a prognostic marker, and also as a possible target for the development of future anticancer therapies.

20.
J Vet Res ; 67(4): 627-633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130450

RESUMO

Introduction: Testin is a protein involved in cell mobility, adhesion and colony formation. In rats, testin presence has been reported in the testes, and its possible role in spermatogenesis has been suggested. Studies in humans also suggest a possible role of testin as a cancer suppressor protein. In the dog, which represents both an important pet species and a good animal model for studying biological and pathological testicular processes, the presence of testin has never been reported. Material and Methods: In the present study, the expression of testin in foetal, prepubertal, adult and aged canine testes was investigated. Testes from 5 adult and 3 aged dogs, from 2 one-month-old puppies and from 2 foetuses miscarried at the end of pregnancy were immunohistochemically examined with a commercial antibody against testin. Results: Testin was intensely expressed in Sertoli cells in every testis examined. Spermatids were also positive for testin in mature dogs and in the testicular areas of the aged ones which were not atrophic. Weak expression of testin was also detected in all testes examined. Conclusion: The present study, the first demonstrating the presence of testin in canine testes, provides the basis for further dog-human comparative research and for studies on the role of this protein in canine physiology, reproduction and testicular pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...