Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(17): 7561-7570, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38606466

RESUMO

This work focuses on the relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II) complexes of histatin 5 and the products of its hydrolysis: its N-terminal fragment (histatin 5-8) and C-terminal fragment (histatin 8). Cu(II) coordinates in an albumin-like binding mode and Zn(II) binds to up to 3 His imidazoles. The antimicrobial activity of histatins and their metal complexes (i) strongly depends on pH - they are more active at pH 5.4 than at 7.4; (ii) the complexes and ligands alone are more effective in eradicating Gram-positive bacteria than the Gram-negative ones, and (iii) Zn(II) coordination is able to change the structure of the N-terminal region of histatin 5 (histatin 5-8) and moderately increase all of the studied histatins' antimicrobial potency.


Assuntos
Complexos de Coordenação , Cobre , Histatinas , Testes de Sensibilidade Microbiana , Zinco , Histatinas/química , Histatinas/farmacologia , Hidrólise , Concentração de Íons de Hidrogênio , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Cobre/química , Cobre/farmacologia , Zinco/química , Zinco/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química
2.
Sci Rep ; 13(1): 18228, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880318

RESUMO

The main limitation to the use of antimicrobial peptides (AMPs) as regular drugs, against antibiotic and antifungal resistance, mainly relates to their rapid degradation by proteolytic enzymes. The introduction of suitable structural changes in the peptide chain can make the peptide less susceptible to the action of proteases, thus overcoming this problem. To improve the plasma stability of calcitermin, a metal-chelating AMP present in the human respiratory tract and investigated in the present study, C- and/or N- terminal modifications have been introduced in the native sequence. Evaluation of peptide stability has been performed to determine the half-life times in human plasma of both native calcitermin and its derivatives. However, the protection of the peptide termini can also affect its metal coordination behaviour. Thus, the characterization of Zn2+ and Cu2+ complexes has been performed by means of several techniques, including potentiometry, high-resolution mass spectrometry, UV-Vis, circular dichroism and EPR. On the basis of the obtained results, it was possible to compare the biological activity of the studied systems, taking into account both the metal-binding ability and the peptide stability to search for a link among them. A significant result of this study is that the N-terminal protection increases the calcitermin half-life over seven times and the formation of metal complexes confers resistance towards degradation almost doubling its half-life.


Assuntos
Anti-Infecciosos , Peptídeos , Humanos , Antibacterianos/química , Quelantes/farmacologia , Quelantes/química , Dicroísmo Circular , Cobre/química , Espectrometria de Massas , Peptídeos/química
3.
Sci Rep ; 12(1): 20543, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446825

RESUMO

The antimicrobial properties of amylin, a 37-amino acid peptide hormone, co-secreted with insulin from the pancreas, are far less known than its antidiabetic function. We provide insight into the bioinorganic chemistry of amylin analogues, showing that the coordination of zinc(II) enhances the antifungal properties of pramlintide, a non-fibrillating therapeutic analogue of amylin. Zinc binds to the N-terminal amino group and His18 imidazole, inducing a kink in the peptide structure, which, in turn, triggers a fibrillization process of the complex, resulting in an amyloid structure most likely responsible for the disruption of the fungal cell.


Assuntos
Antifúngicos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Antifúngicos/farmacologia , Insulina , Zinco/farmacologia
4.
Sci Rep ; 12(1): 425, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013439

RESUMO

Membrane environment often has an important effect on the structure, and therefore also on the coordination mode of biologically relevant metal ions. This is also true in the case of Cu(II) coordination to amylin analogues-rat amylin, amylin1-19, pramlintide and Ac-pramlintide, which offer N-terminal amine groups and/or histidine imidazoles as copper(II) anchoring sites. Complex stabilities are comparable, with the exception of the very stable Cu(II)-amylin1-19, which proves that the presence of the amylin C-terminus lowers its affinity for copper(II); although not directly involved, its appropriate arrangement sterically prevents early metal binding. Most interestingly, in membrane-mimicking solution, the Cu(II) affinities of amylin analogues are lower than the ones in water, probably due to the crowding effect of the membrane solution and the fact that amide coordination occurs at higher pH, which happens most likely because the α-helical structure, imposed by the membrane-mimicking solvent, prevents the amides from binding at lower pH, requiring a local unwinding of the α-helix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA