Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439688

RESUMO

Aging is a set of complex processes that occur temporally and continuously. It is generally a unidirectional progression of cellular and molecular changes occurring during the life stages of cells, tissues and ultimately the whole organism. In vertebrate organisms, this begins at conception from the first steps in blastocyst formation, gastrulation, germ layer differentiation, and organogenesis to a continuum of embryonic, fetal, adolescent, adult, and geriatric stages. Tales of the "fountain of youth" and songs of being "forever young" are dominant ideas informing us that growing old is something science should strive to counteract. Here, we discuss the normal life stages of the blood system, particularly the historical recognition of its importance in the early growth stages of vertebrates, and what this means with respect to progressive gain and loss of hematopoietic function in the adult.

2.
Nat Commun ; 15(1): 2255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490977

RESUMO

An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.


Assuntos
Hemangioblastos , Células-Tronco Hematopoéticas , Animais , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Hematopoese/genética , Fatores de Transcrição/metabolismo , Autofagia/genética , Mesonefro
3.
Curr Opin Cell Biol ; 85: 102255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806296

RESUMO

The hematopoietic system is one of the earliest tissues to develop. De novo generation of hematopoietic progenitor and stem cells occurs through a transdifferentiation of (hemogenic) endothelial cells to hematopoietic identity, resulting in the formation of intra-aortic hematopoietic cluster (IAHC) cells. Heterogeneity of IAHC cell phenotypes and functions has stymied the field in its search for the transcriptional program of emerging hematopoietic stem cells (HSCs), given that an individual IAHC cannot be simultaneously examined for function and transcriptome. Several models could account for this heterogeneity, including a novel model suggesting that the transcriptomes of individual emerging IAHC cells are in an unstable/metastable state, with pivotal hematopoietic transcription factors expressed dynamically due to transcriptional pulsing and combinatorial activities. The question remains - how is functional hematopoietic cell fate established - is the process stochastic? This article touches upon these important issues, which may be relevant to the field's inability to make HSCs ex vivo.


Assuntos
Células Endoteliais , Células-Tronco Hematopoéticas , Diferenciação Celular , Transdiferenciação Celular/fisiologia , Processos Estocásticos
4.
Blood Adv ; 7(10): 2082-2093, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-36649572

RESUMO

The first hematopoietic stem cells (HSCs) are formed through endothelial-to-hematopoietic transition (EHT) during embryonic development. The transcription factor GATA2 is a crucial regulator of EHT and HSC function throughout life. Because patients with GATA2 haploinsufficiency have inborn mutations, prenatal defects are likely to influence disease development. In mice, Gata2 haploinsufficiency (Gata2+/-) reduces the number and functionality of embryonic hematopoietic stem and progenitor cells (HSPCs) generated through EHT. However, the embryonic HSPC pool is heterogeneous and the mechanisms underlying this defect in Gata2+/- embryos remain unclear. Here, we investigated whether Gata2 haploinsufficiency selectively affects a cellular subset undergoing EHT. We showed that Gata2+/- HSPCs initiate, but cannot fully activate, hematopoietic programming during EHT. In addition, due to the reduced activity of the endothelial repressor Gfi1b, Gata2+/- HSPCs cannot repress endothelial identity to complete maturation. Finally, we showed that hematopoietic-specific induction of gfi1b could restore HSC production in gata2b-null (gata2b-/-) zebrafish embryos. This study illustrates the pivotal role of Gata2 in the regulation of the transcriptional network governing HSPC identity throughout the EHT.


Assuntos
Deficiência de GATA2 , Peixe-Zebra , Gravidez , Feminino , Animais , Camundongos , Peixe-Zebra/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
5.
Exp Hematol ; 118: 1-11, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529317

RESUMO

The adult-definitive hematopoietic hierarchy and hematopoietic stem cells (HSCs) residing in the bone marrow are established during embryonic development. In mouse, human, and many other mammals, it is the sudden formation of so-called intra-aortic/arterial hematopoietic clusters (IAHCs) that best signifies and visualizes this de novo generation of HSCs and hematopoietic progenitor cells (HPCs). Cluster cells arise through an endothelial-to-hematopoietic transition and, for some time, express markers/genes of both tissue types, whilst acquiring more hematopoietic features and losing endothelial ones. Among several hundreds of IAHC cells, the midgestation mouse embryo contains only very few bona fide adult-repopulating HSCs, suggestive of a challenging cell fate to achieve. Most others are HPCs of various types, some of which have the potential to mature into HSCs in vitro. Based on the number of cells that reveal hematopoietic function, a fraction of IAHC cells is uncharacterized. This review aims to explore the current state of knowledge on IAHC cells. We will describe markers useful for isolation and characterization of these fleetingly produced, yet vitally important, cells and for the refined enrichment of the HSCs they contain, and speculate on the role of some IAHC cells that are as-yet functionally uncharacterized.


Assuntos
Embrião de Mamíferos , Células-Tronco Hematopoéticas , Gravidez , Feminino , Camundongos , Animais , Humanos , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Embrião de Mamíferos/metabolismo , Mamíferos
6.
Hemasphere ; 6(6): e737, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35647488

RESUMO

The hierarchical framework of the adult blood system as we know it from current medical and hematology textbooks, displays a linear branching network of dividing and differentiated cells essential for the growth and maintenance of the healthy organism. This view of the hierarchy has evolved over the last 75 years. An amazing increase in cellular complexity has been realized; however, innovative single-cell technologies continue to uncover essential cell types and functions in animal models and the human blood system. The most potent cell of the hematopoietic hierarchy is the hematopoietic stem cell. Stem cells for adult tissues are the long-lived self-renewing cellular component, which ensure that differentiated tissue-specific cells are maintained and replaced through the entire adult lifespan. Although much blood research is focused on hematopoietic tissue homeostasis, replacement and regeneration during adult life, embryological studies have widened and enriched our understanding of additional developmental hierarchies and interacting cells of this life-sustaining tissue. Here, we review the current state of knowledge of the hierarchical organization and the vast heterogeneity of the hematopoietic system from embryonic to adult stages.

7.
ACS Synth Biol ; 10(6): 1465-1480, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34019395

RESUMO

Multicellular systems possess an intrinsic capacity to autonomously generate nonrandom state distributions or morphologies in a process termed self-organization. Facets of self-organization, such as pattern formation, pattern elaboration, and symmetry breaking, are frequently observed in developing embryos. Artificial stem cell-derived structures including embryoid bodies (EBs), gastruloids, and organoids also demonstrate self-organization, but with a limited capacity compared to their in vivo developmental counterparts. There is a pressing need for better tools to allow user-defined control over self-organization in these stem cell-derived structures. Here, we employ synthetic biology to establish an efficient platform for the generation of self-organizing coaggregates, in which HEK-293 cells overexpressing P-cadherin (Cdh3) spontaneously form cell clusters attached mostly to one or two locations on the exterior of EBs. These Cdh3-expressing HEK cells, when further engineered to produce functional mouse WNT3A, evoke polarized and gradual Wnt/ß-catenin pathway activation in EBs during coaggregation cultures. The localized WNT3A provision induces nascent mesoderm specification within regions of the EB close to the Cdh3-Wnt3a-expressing HEK source, resulting in pattern elaboration and symmetry breaking within EBs. This synthetic biology-based approach puts us closer toward engineering synthetic organizers to improve the realism in stem cell-derived structures.


Assuntos
Padronização Corporal/genética , Engenharia Celular/métodos , Engenharia Genética/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Via de Sinalização Wnt/genética , Animais , Caderinas/metabolismo , Diferenciação Celular/genética , Técnicas de Cocultura/métodos , Células HEK293 , Humanos , Mesoderma/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Biologia Sintética/métodos , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
8.
Blood Adv ; 5(3): 829-842, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560396

RESUMO

Integrated molecular signals regulate cell fate decisions in the embryonic aortic endothelium to drive hematopoietic stem cell (HSC) generation during development. The G-protein-coupled receptor 56 (Gpr56, also called Adgrg1) is the most highly upregulated receptor gene in cells that take on hematopoietic fate and is expressed by adult bone marrow HSCs. Despite the requirement for Gpr56 in hematopoietic stem/progenitor cell (HS/PC) generation in zebrafish embryos and the highly upregulated expression of GPR56 in treatment-resistant leukemic patients, its function in normal mammalian hematopoiesis remains unclear. Here, we examine the role of Gpr56 in HS/PC development in Gpr56 conditional knockout (cKO) mouse embryos and Gpr knockout (KO) embryonic stem cell (ESC) hematopoietic differentiation cultures. Our results show a bias toward myeloid differentiation of Gpr56 cKO fetal liver HSCs and an increased definitive myeloid progenitor cell frequency in Gpr56KO ESC differentiation cultures. Surprisingly, we find that mouse Gpr97 can rescue Gpr56 morphant zebrafish hematopoietic generation, and that Gpr97 expression is upregulated in mouse Gpr56 deletion models. When both Gpr56 and Gpr97 are deleted in ESCs, no or few hematopoietic PCs (HPCs) are generated upon ESC differentiation. Together, our results reveal novel and redundant functions for these 2 G-protein coupled receptors in normal mammalian hematopoietic cell development and differentiation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Diferenciação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Receptores Acoplados a Proteínas G/genética , Peixe-Zebra/genética
9.
Sci Immunol ; 6(56)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547048

RESUMO

E-cadherin is a calcium-dependent cell-cell adhesion molecule extensively studied for its involvement in tissue formation, epithelial cell behavior, and suppression of cancer. However, E-cadherin expression in the hematopoietic system has not been fully elucidated. Combining single-cell RNA-sequencing analyses and immunophenotyping, we revealed that progenitors expressing high levels of E-cadherin and contained within the granulocyte-monocyte progenitors (GMPs) fraction have an enriched capacity to differentiate into basophils and mast cells. We detected E-cadherin expression on committed progenitors before the expression of other reported markers of these lineages. We named such progenitors pro-BMPs (pro-basophil and mast cell progenitors). Using RNA sequencing, we observed transcriptional priming of pro-BMPs to the basophil and mast cell lineages. We also showed that GATA-2 directly regulates E-cadherin expression in the basophil and mast cell lineages, thus providing a mechanistic connection between the expression of this cell surface marker and the basophil and mast cell fate specification.


Assuntos
Caderinas/genética , Fator de Transcrição GATA2/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Animais , Basófilos/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Cultivadas , Mastócitos/fisiologia , Camundongos , Cultura Primária de Células , RNA-Seq , Análise de Célula Única
10.
Cell Rep ; 31(6): 107627, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402290

RESUMO

Whereas hundreds of cells in the mouse embryonic aorta transdifferentiate to hematopoietic cells, only very few establish hematopoietic stem cell (HSC) identity at a single time point. The Gata2 transcription factor is essential for HSC generation and function. In contrast to surface-marker-based cell isolation, Gata2-based enrichment provides a direct link to the internal HSC regulatory network. Here, we use iterations of index-sorting of Gata2-expressing intra-aortic hematopoietic cluster (IAHC) cells, single-cell transcriptomics, and functional analyses to connect HSC identity to specific gene expression. Gata2-expressing IAHC cells separate into 5 major transcriptomic clusters. Iterative analyses reveal refined CD31, cKit, and CD27 phenotypic parameters that associate specific molecular profiles in one cluster with distinct HSC and multipotent progenitor function. Thus, by iterations of single-cell approaches, we identify the transcriptome of the first functional HSCs as they emerge in the mouse embryo and localize them to aortic clusters containing 1-2 cells.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Modelos Animais de Doenças , Camundongos
11.
EMBO J ; 39(8): e104270, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32149421

RESUMO

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium in cluster structures that protrude into the embryonic aortic lumen. Although much is known about the molecular characteristics of the developing hematopoietic cells, we lack a complete understanding of their origin and the three-dimensional organization of the niche. Here, we use advanced live imaging techniques of organotypic slice cultures, clonal analysis, and mathematical modeling to show the two-step process of intra-aortic hematopoietic cluster (IACH) formation. First, a hemogenic progenitor buds up from the endothelium and undergoes division forming the monoclonal core of the IAHC. Next, surrounding hemogenic cells are recruited into the IAHC, increasing their size and heterogeneity. We identified the Notch ligand Dll4 as a negative regulator of the recruitment phase of IAHC. Blocking of Dll4 promotes the entrance of new hemogenic Gfi1+ cells into the IAHC and increases the number of cells that acquire HSC activity. Mathematical modeling based on our data provides estimation of the cluster lifetime and the average recruitment time of hemogenic cells to the cluster under physiologic and Dll4-inhibited conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aorta/embriologia , Proteínas de Ligação ao Cálcio/genética , Divisão Celular , Células Progenitoras Endoteliais/fisiologia , Feminino , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos
12.
Blood ; 134(22): 1929-1940, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31697805

RESUMO

Along with the aorta-gonad-mesonephros region, the head is a site of hematopoietic stem and progenitor cell (HS/PC) development in the mouse embryo. Macrophages are present in both these embryonic hemogenic sites, and recent studies indicate a functional interaction of macrophages with hematopoietic cells as they are generated in the aorta. Whereas brain macrophages or "microglia" are known to affect neuronal patterning and vascular circuitry in the embryonic brain, it is unknown whether macrophages play a role in head hematopoiesis. Here, we characterize head macrophages and examine whether they affect the HS/PC output of the hindbrain-branchial arch (HBA) region of the mouse embryo. We show that HBA macrophages are CD45+F4/80+CD11b+Gr1- and express the macrophage-specific Csf1r-GFP reporter. In the HBA of chemokine receptor-deficient (Cx3cr1-/-) embryos, a reduction in erythropoiesis is concomitant with a decrease in HBA macrophage percentages. In cocultures, we show that head macrophages boost hematopoietic progenitor cell numbers from HBA endothelial cells > twofold, and that the proinflammatory factor tumor necrosis factor-α is produced by head macrophages and influences HBA hematopoiesis in vitro. Taken together, head macrophages play a positive role in HBA erythropoiesis and HS/PC expansion and/or maturation, acting as microenvironmental cellular regulators in hematopoietic development.


Assuntos
Embrião de Mamíferos/embriologia , Eritropoese/fisiologia , Cabeça/embriologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Animais , Embrião de Mamíferos/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout
13.
Immunity ; 50(6): 1439-1452.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31178352

RESUMO

Hematopoietic stem cells (HSCs) are generated from specialized endothelial cells of the embryonic aorta. Inflammatory factors are implicated in regulating mouse HSC development, but which cells in the aorta-gonad-mesonephros (AGM) microenvironment produce these factors is unknown. In the adult, macrophages play both pro- and anti-inflammatory roles. We sought to examine whether macrophages or other hematopoietic cells found in the embryo prior to HSC generation were involved in the AGM HSC-generative microenvironment. CyTOF analysis of CD45+ AGM cells revealed predominance of two hematopoietic cell types, mannose-receptor positive macrophages and mannose-receptor negative myeloid cells. We show here that macrophage appearance in the AGM was dependent on the chemokine receptor Cx3cr1. These macrophages expressed a pro-inflammatory signature, localized to the aorta, and dynamically interacted with nascent and emerging intra-aortic hematopoietic cells (IAHCs). Importantly, upon macrophage depletion, no adult-repopulating HSCs were detected, thus implicating a role for pro-inflammatory AGM-associated macrophages in regulating the development of HSCs.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Imunofluorescência , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismo
14.
Elife ; 82019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30758286

RESUMO

The origins and functions of kidney macrophages in the adult have been explored, but their roles during development remain largely unknown. Here we characterise macrophage arrival, localisation, heterogeneity, and functions during kidney organogenesis. Using genetic approaches to ablate macrophages, we identify a role for macrophages in nephron progenitor cell clearance as mouse kidney development begins. Throughout renal organogenesis, most kidney macrophages are perivascular and express F4/80 and CD206. These macrophages are enriched for mRNAs linked to developmental processes, such as blood vessel morphogenesis. Using antibody-mediated macrophage-depletion, we show macrophages support vascular anastomoses in cultured kidney explants. We also characterise a subpopulation of galectin-3+ (Gal3+) myeloid cells within the developing kidney. Our findings may stimulate research into macrophage-based therapies for renal developmental abnormalities and have implications for the generation of bioengineered kidney tissues.


Assuntos
Galectina 3/genética , Rim/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Organogênese/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Rim/metabolismo , Lectinas Tipo C/genética , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Camundongos , Néfrons/metabolismo , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo
15.
Nat Commun ; 9(1): 5401, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559342

RESUMO

The original version of this Article contained errors in the author affiliations.Martin R. Bennett was incorrectly associated with Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, Phoebe Oldach was incorrectly associated with Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.This has now been corrected in the HTML version of the Article. The PDF version of the Article was correct at the time of publication.

16.
Nat Commun ; 9(1): 4567, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385745

RESUMO

Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética , Transcriptoma , Animais , Aorta/metabolismo , Ataxina-1/metabolismo , Artérias Carótidas/metabolismo , Linhagem da Célula , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Camundongos , Músculo Liso Vascular/citologia , Análise de Sequência de RNA , Análise de Célula Única
17.
Stem Cell Reports ; 11(4): 1009-1020, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30197119

RESUMO

Mast cells are tissue-resident immune cells. Their overgrowth/overactivation results in a range of common distressing, sometimes life-threatening disorders, including asthma, psoriasis, anaphylaxis, and mastocytosis. Currently, drug discovery is hampered by use of cancer-derived mast cell lines or primary cells. Cell lines provide low numbers of mature mast cells and are not representative of in vivo mast cells. Mast cell generation from blood/bone marrow gives poor reproducibility, requiring 8-12 weeks of culture. Here we report a method for the rapid/robust production of mast cells from pluripotent stem cells (PSCs). An advantageous Gata2Venus reporter enriches mast cells and progenitors as they differentiate from PSCs. Highly proliferative mouse mast cells and progenitors emerge after 2 weeks. This method is applicable for rapid human mast cell generation, and could enable the production of sufficient numbers of physiologically relevant human mast cells from patient induced PSCs for the study of mast cell-associated disorders and drug discovery.


Assuntos
Técnicas de Cultura de Células/métodos , Fator de Transcrição GATA2/metabolismo , Genes Reporter , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Peptídeo Hidrolases/metabolismo , Fenótipo , Receptores de Superfície Celular/metabolismo
18.
Cell Stem Cell ; 22(5): 639-651, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727679

RESUMO

Evidence of the diversity and multi-layered organization of the hematopoietic system is leading to new insights that may inform ex vivo production of blood cells. Interestingly, not all long-lived hematopoietic cells derive from hematopoietic stem cells (HSCs). Here we review the current knowledge on HSC-dependent cell lineages and HSC-independent tissue-resident hematopoietic cells and how they arise during embryonic development. Classical embryological and genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information on the molecular/cell trajectories that form the complete hematopoietic system. We also discuss the current developmentally informed efforts toward generating engraftable and multilineage blood cells.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Humanos
19.
J Exp Med ; 215(1): 233-248, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217535

RESUMO

Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2+/- aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor-related hematologic dysfunctions.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA2/genética , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Análise de Célula Única , Animais , Feminino , Imunofluorescência , Fator de Transcrição GATA2/metabolismo , Expressão Gênica , Genes Reporter , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Análise de Célula Única/métodos
20.
Stem Cell Reports ; 10(1): 151-165, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29276152

RESUMO

In vivo hematopoietic generation occurs in waves of primitive and definitive cell emergence. Differentiation cultures of pluripotent embryonic stem cells (ESCs) offer an accessible source of hematopoietic cells for blood-related research and therapeutic strategies. However, despite many approaches, it remains a goal to robustly generate hematopoietic progenitor and stem cells (HP/SCs) in vitro from ESCs. This is partly due to the inability to efficiently promote, enrich, and/or molecularly direct hematopoietic emergence. Here, we use Gata2Venus (G2V) and Ly6a(SCA1)GFP (LG) reporter ESCs, derived from well-characterized mouse models of HP/SC emergence, to show that during in vitro differentiation they report emergent waves of primitive hematopoietic progenitor cells (HPCs), definitive HPCs, and B-lymphoid cell potential. These results, facilitated by enrichment of single and double reporter cells with HPC properties, demonstrate that in vitro ESC differentiation approximates the waves of hematopoietic cell generation found in vivo, thus raising possibilities for enrichment of rare ESC-derived HP/SCs.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA2 , Genes Reporter , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...