Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202300567, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942669

RESUMO

Galectins, a class of carbohydrate-binding proteins, play a crucial role in various physiological and disease processes. Therefore, the identification of ligands that efficiently bind these proteins could potentially lead to the development of new therapeutic compounds. In this study, we present a method that involves screening synthetic click glycopeptide libraries to identify lectin-binding ligands with low micromolar affinity. Our methodology, initially optimized using Concanavalin A, was subsequently applied to identify binders for the therapeutically relevant galectin 1. Binding affinities were assessed using various methods and showed that the selected glycopeptides exhibited enhanced binding potency to the target lectins compared to the starting sugar moieties. This approach offers an alternative means of discovering galectin-binding ligands as well as other carbohydrate-binding proteins, which are considered important therapeutic targets.

2.
Angew Chem Int Ed Engl ; 62(36): e202306828, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37436086

RESUMO

The development of reagents that can selectively react in complex biological media is an important challenge. Here we show that N1-alkylation of 1,2,4-triazines yields the corresponding triazinium salts, which are three orders of magnitude more reactive in reactions with strained alkynes than the parent 1,2,4-triazines. This powerful bioorthogonal ligation enables efficient modification of peptides and proteins. The positively charged N1-alkyl triazinium salts exhibit favorable cell permeability, which makes them superior for intracellular fluorescent labeling applications when compared to analogous 1,2,4,5-tetrazines. Due to their high reactivity, stability, synthetic accessibility and improved water solubility, the new ionic heterodienes represent a valuable addition to the repertoire of existing modern bioorthogonal reagents.

3.
RSC Med Chem ; 14(1): 144-153, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36760748

RESUMO

The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.

4.
Chemistry ; 27(54): 13632-13641, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34241924

RESUMO

Despite the great advances in solid-phase peptide synthesis (SPPS), the incorporation of certain functional groups into peptide sequences is restricted by the compatibility of the building blocks with conditions used during SPPS. In particular, the introduction of highly reactive groups used in modern bioorthogonal reactions into peptides remains elusive. Here, we present an optimized synthetic protocol enabling installation of two strained dienophiles, trans-cyclooctene (TCO) and bicyclononyne (BCN), into different peptide sequences. The two groups enable fast and modular post-synthetic functionalization of peptides, as we demonstrate in preparation of peptide-peptide and peptide-drug conjugates. Due to the excellent biocompatibility, the click-functionalization of the peptides can be performed directly in live cells. We further show that the introduction of both clickable groups into peptides enables construction of smart, multifunctional probes that can streamline complex chemical biology experiments such as visualization and pull-down of metabolically labeled glycoconjugates. The presented strategy will find utility in construction of peptides for diverse applications, where high reactivity, efficiency and biocompatibility of the modification step is critical.


Assuntos
Ciclo-Octanos , Peptídeos
5.
JACS Au ; 1(1): 23-30, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33554213

RESUMO

The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.

6.
Chempluschem ; 85(8): 1669-1675, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32757364

RESUMO

Bioorthogonal cleavage reactions are gaining popularity in chemically inducible prodrug activation and in the control of biomolecular functions. Despite similar applications, these reactions were developed and optimized on different substrates and under different experimental conditions. Reported herein is a side-by-side comparison of palladium-, ruthenium- and tetrazine-triggered release reactions, which aims at comparing the reaction kinetics, efficiency and overall advantages and limitations of the methods. In addition, we disclose the possibility of mutual combination of the cleavage reactions. Finally, we compare the efficiency of the bioorthogonal deprotections in cellular experiments, which revealed that among the three methods investigated, the palladium- and the tetrazine-promoted reaction can be used for efficient prodrug activation, but only the tetrazine-triggered reactions proceed efficiently inside cells.


Assuntos
Compostos Heterocíclicos/química , Metais/química , Elementos de Transição/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Concentração Inibidora 50
7.
Chemistry ; 26(44): 9945-9953, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339341

RESUMO

Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin-tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.


Assuntos
Cumarínicos/análise , Corantes Fluorescentes/análise , Compostos Heterocíclicos/análise , Imagem Óptica , Linhagem Celular Tumoral , Humanos , Microscopia Confocal
8.
Chempluschem ; 84(5): 493-497, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31245251

RESUMO

Fluorogenic bioorthogonal reactions enable visualization of biomolecules with excellent signal-to-noise ratio. A bicyclononyne-tetrazine ligation that produces fluorescent pyridazine products has been developed. In stark contrast to previous approaches, the formation of the dye is an inherent result of the chemical reaction and no additional fluorophores are needed in the reagents. The crucial structural elements that determine dye formation are electron-donating groups present in the starting tetrazine unit. The newly formed pyridazine fluorophores show interesting photophysical properties the fluorescence intensity increase in the reaction can reach an excellent 900-fold. Model imaging experiments demonstrate the application potential of this new fluorogenic bioorthogonal reaction.


Assuntos
Compostos Bicíclicos com Pontes/química , Corantes Fluorescentes/química , Piridazinas/química , Linhagem Celular Tumoral , Reação de Cicloadição , Compostos Heterocíclicos com 1 Anel/química , Humanos , Microscopia Confocal
9.
Mol Oncol ; 13(7): 1467-1489, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919591

RESUMO

Radiation and chemotherapy represent standard-of-care cancer treatments. However, most patients eventually experience tumour recurrence, treatment failure and metastatic dissemination with fatal consequences. To elucidate the molecular mechanisms of resistance to radio- and chemotherapy, we exposed human cancer cell lines (HeLa, MCF-7 and DU145) to clinically relevant doses of 5-azacytidine or ionizing radiation and compared the transcript profiles of all surviving cell subpopulations, including low-adherent stem-like cells. Stress-mobilized low-adherent cell fractions differed from other survivors in terms of deregulation of hundreds of genes, including those involved in interferon response. Exposure of cancer cells to interferon-gamma but not interferon-beta resulted in the development of a heterogeneous, low-adherent fraction comprising not only apoptotic/necrotic cells but also live cells exhibiting active Notch signalling and expressing stem-cell markers. Chemical inhibition of mitogen-activated protein kinase/ERK kinase (MEK) or siRNA-mediated knockdown of extracellular signal-regulated kinase 1/2 (Erk1/2) and interferon responsible factor 1 (IRF1) prevented mobilization of the surviving low-adherent population, indicating that interferon-gamma-mediated loss of adhesion and anoikis resistance required an active Erk pathway interlinked with interferon signalling by transcription factor IRF1. Notably, a skin-specific protein suprabasin (SBSN), a recently identified oncoprotein, was among the top scoring genes upregulated in surviving low-adherent cancer cells induced by 5-azacytidine or irradiation. SBSN expression required the activity of the MEK/Erk pathway, and siRNA-mediated knockdown of SBSN suppressed the low-adherent fraction in irradiated, interferon-gamma- and 5-azacytidine-treated cells, respectively, implicating SBSN in genotoxic stress-induced phenotypic plasticity and stress resistance. Importantly, SBSN expression was observed in human clinical specimens of colon and ovarian carcinomas, as well as in circulating tumour cells and metastases of the 4T1 mouse model. The association of SBSN expression with progressive stages of cancer development indicates its role in cancer evolution and therapy resistance.


Assuntos
Antígenos de Diferenciação/genética , Antineoplásicos/farmacologia , Azacitidina/farmacologia , Interferons/farmacologia , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Animais , Anoikis/efeitos dos fármacos , Anoikis/efeitos da radiação , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Neoplasias/radioterapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
10.
Chembiochem ; 20(7): 886-890, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561884

RESUMO

Inverse-electron-demand Diels-Alder (iEDDA) cycloaddition between 1,2,4,5-tetrazines and strained dienophiles belongs among the most popular bioconjugation reactions. In addition to its fast kinetics, this cycloaddition can be tailored to produce fluorescent products from non-fluorescent starting materials. Here we show that even the reaction intermediates formed in iEDDA cycloaddition can lead to the formation of new types of fluorophores. The influence of various substituents on their photophysical properties and the generality of the approach with use of various trans-cyclooctene derivatives were studied. Model bioimaging experiments demonstrate the application potential of fluorogenic iEDDA cycloaddition.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Compostos Heterocíclicos com 1 Anel/química , Reação de Cicloadição , Corantes Fluorescentes/síntese química , Células HeLa , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
11.
Aging (Albany NY) ; 10(3): 434-462, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29615539

RESUMO

Aging involves tissue accumulation of senescent cells (SC) whose elimination through senolytic approaches may evoke organismal rejuvenation. SC also contribute to aging-associated pathologies including cancer, hence it is imperative to better identify and target SC. Here, we aimed to identify new cell-surface proteins differentially expressed on human SC. Besides previously reported proteins enriched on SC, we identified 78 proteins enriched and 73 proteins underrepresented in replicatively senescent BJ fibroblasts, including L1CAM, whose expression is normally restricted to the neural system and kidneys. L1CAM was: 1) induced in premature forms of cellular senescence triggered chemically and by gamma-radiation, but not in Ras-induced senescence; 2) induced upon inhibition of cyclin-dependent kinases by p16INK4a; 3) induced by TGFbeta and suppressed by RAS/MAPK(Erk) signaling (the latter explaining the lack of L1CAM induction in RAS-induced senescence); and 4) induced upon downregulation of growth-associated gene ANT2, growth in low-glucose medium or inhibition of the mevalonate pathway. These data indicate that L1CAM is controlled by a number of cell growth- and metabolism-related pathways during SC development. Functionally, SC with enhanced surface L1CAM showed increased adhesion to extracellular matrix and migrated faster. Our results provide mechanistic insights into senescence of human cells, with implications for future senolytic strategies.


Assuntos
Molécula L1 de Adesão de Célula Nervosa/metabolismo , Adesão Celular/fisiologia , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Senescência Celular , Regulação para Baixo , Fibroblastos , Raios gama , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Molécula L1 de Adesão de Célula Nervosa/genética , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
12.
Biomaterials ; 154: 275-290, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29149721

RESUMO

The exceptionally high cellular uptake of gold nanorods (GNRs) bearing cationic surfactants makes them a promising tool for biomedical applications. Given the known specific toxic and stress effects of some preparations of cationic nanoparticles, the purpose of this study was to evaluate, in an in vitro and in vivo in mouse, the potential harmful effects of GNRs coated with (16-mercaptohexadecyl)trimethylammonium bromide (MTABGNRs). Interestingly, even after cellular accumulation of high amounts of MTABGNRs sufficient for induction of photothermal effect, no genotoxicity (even after longer-term accumulation), induction of autophagy, destabilization of lysosomes (dominant organelles of their cellular destination), alterations of actin cytoskeleton, or in cell migration could be detected in vitro. In vivo, after intravenous administration, the majority of GNRs accumulated in mouse spleen followed by lungs and liver. Microscopic examination of the blood and spleen showed that GNRs interacted with white blood cells (mononuclear and polymorphonuclear leukocytes) and thrombocytes, and were delivered to the spleen red pulp mainly as GNR-thrombocyte complexes. Importantly, no acute toxic effects of MTABGNRs administered as 10 or 50 µg of gold per mice, as well as no pathological changes after their high accumulation in the spleen were observed, indicating good tolerance of MTABGNRs by living systems.


Assuntos
Ouro/metabolismo , Nanotubos/química , Compostos de Amônio Quaternário/metabolismo , Compostos de Sulfidrila/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Plaquetas/ultraestrutura , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Nanotubos/toxicidade , Nanotubos/ultraestrutura , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Baço/efeitos dos fármacos , Baço/patologia , Distribuição Tecidual
13.
Chemistry ; 24(10): 2426-2432, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29243853

RESUMO

Fluorogenic bioorthogonal reactions enable visualization of biomolecules under native conditions with excellent signal-to-noise ratio. Here, we present the design and synthesis of conformationally-strained aziridine-fused trans-cyclooctene (aza-TCO) dienophiles, which lead to the formation of fluorescent products in tetrazine ligations without the need for attachment of an extra fluorophore moiety. The presented aza-TCOs adopt the highly strained "half-chair" conformation, which was predicted computationally and confirmed by NMR measurements and X-ray crystallography. Kinetic studies revealed that the aza-TCOs belong to the most reactive dienophiles known to date. The potential of the newly developed aza-TCO probes for bioimaging applications is demonstrated by protein labeling experiments, imaging of cellular glycoconjugates and peptidoglycan imaging of live bacteria.

14.
Angew Chem Int Ed Engl ; 56(5): 1334-1337, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28026913

RESUMO

The development of fluorogenic reactions which lead to the formation of fluorescent products from two nonfluorescent starting materials is highly desirable, but challenging. Reported herein is a new concept of fluorescent product formation upon the inverse electron-demand Diels-Alder reaction of 1,2,4,5-tetrazines with particular trans-cyclooctene (TCO) isomers. In sharp contrast to known fluorogenic reagents the presented chemistry leads to the rapid formation of unprecedented fluorescent 1,4-dihydropyridazines so that the fluorophore is built directly upon the chemical reaction. Attachment of an extra fluorophore moiety is therefore not needed. The photochemical properties of the resulting dyes can be easily tuned by changing the substitution pattern of the starting 1,2,4,5-tetrazine. We support the claim with NMR measurements and rationalize the data by computational study. Cell-labeling experiments were performed to demonstrate the potential of the fluorogenic reaction for bioimaging.

15.
Chem Sci ; 8(5): 3593-3598, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155204

RESUMO

1,2,4-Triazines have recently been identified as versatile dienes participating in the inverse electron-demand Diels-Alder reaction with strained dienophiles. However, their widespread utility in bioconjugation reactions is still limited. Herein, we report a systematic study on the reactivity of various 1,2,4-triazines with trans-cyclooctenes showing that the structure of both the triazine and the dienophile significantly affect the reaction rate. Our kinetic study led to the discovery of novel cationic 1,2,4-triazines with superior properties for bioconjugation reactions. We have developed an efficient method that enables their late-stage functionalization and allows for easy access to various useful heterobifunctional scaffolds. In addition, these charged dienes form unprecedented fluorescent products upon reaction with trans-cyclooctenes and can be used for fluorogenic labeling of subcellular compartments in live cells.

16.
Bioconjug Chem ; 27(10): 2558-2574, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27602782

RESUMO

Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.


Assuntos
Exocitose , Ouro/química , Ouro/farmacocinética , Nanotubos/química , Polilisina/química , Polilisina/farmacocinética , Compostos de Amônio Quaternário/química , Compostos de Sulfidrila/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Meios de Cultura , Estabilidade de Medicamentos , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Citometria de Fluxo , Humanos , Lisossomos/efeitos dos fármacos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanotubos/análise , Proteoglicanas/química , Proteoglicanas/metabolismo , Compostos de Amônio Quaternário/síntese química
17.
Sci Rep ; 6: 30864, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480647

RESUMO

Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Miosina Tipo I/metabolismo , Pele/metabolismo , Animais , Movimento Celular , Forma Celular , Células Cultivadas , Exocitose/fisiologia , Fibroblastos/citologia , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Pele/citologia
18.
J Cell Sci ; 128(16): 3106-16, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116569

RESUMO

Paxillin (PXN) is a focal adhesion protein that has been implicated in signal transduction from the extracellular matrix. Recently, it has been shown to shuttle between the cytoplasm and the nucleus. When inside the nucleus, paxillin promotes cell proliferation. Here, we introduce paxillin as a transcriptional regulator of IGF2 and H19 genes. It does not affect the allelic expression of the two genes; rather, it regulates long-range chromosomal interactions between the IGF2 or H19 promoter and a shared distal enhancer on an active allele. Specifically, paxillin stimulates the interaction between the enhancer and the IGF2 promoter, thus activating IGF2 gene transcription, whereas it restrains the interaction between the enhancer and the H19 promoter, downregulating the H19 gene. We found that paxillin interacts with cohesin and the mediator complex, which have been shown to mediate long-range chromosomal looping. We propose that these interactions occur at the IGF2 and H19 gene cluster and are involved in the formation of loops between the IGF2 and H19 promoters and the enhancer, and thus the expression of the corresponding genes. These observations contribute to a mechanistic explanation of the role of paxillin in proliferation and fetal development.


Assuntos
Proliferação de Células/genética , Desenvolvimento Fetal/genética , Fator de Crescimento Insulin-Like II/biossíntese , Paxilina/administração & dosagem , RNA Longo não Codificante/biossíntese , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proteínas Cromossômicas não Histona/genética , Metilação de DNA/genética , Elementos Facilitadores Genéticos , Matriz Extracelular/genética , Adesões Focais/genética , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Células Hep G2 , Humanos , Fator de Crescimento Insulin-Like II/genética , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Coesinas
19.
PLoS One ; 8(4): e61406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593477

RESUMO

BACKGROUND: Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. CONCLUSION/SIGNIFICANCE: We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.


Assuntos
Núcleo Celular/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Fenótipo , Animais , Western Blotting , Primers do DNA/genética , Genótipo , Imunoprecipitação , Camundongos , Camundongos Knockout , Plasmídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Cell Sci ; 126(Pt 12): 2730-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23591814

RESUMO

RNA polymerase I (Pol I) transcription is essential for the cell cycle, growth and protein synthesis in eukaryotes. In the present study, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) is a part of the protein complex on the active ribosomal promoter during transcription. PIP2 makes a complex with Pol I and the Pol I transcription factor UBF in the nucleolus. PIP2 depletion reduces Pol I transcription, which can be rescued by the addition of exogenous PIP2. In addition, PIP2 also binds directly to the pre-rRNA processing factor fibrillarin (Fib), and co-localizes with nascent transcripts in the nucleolus. PIP2 binding to UBF and Fib modulates their binding to DNA and RNA, respectively. In conclusion, PIP2 interacts with a subset of Pol I transcription machinery, and promotes Pol I transcription.


Assuntos
Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Transcrição Gênica/genética , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...