Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225106

RESUMO

INTRODUCTION/AIMS: Swim training and regulation of copper metabolism result in clinical benefits in amyotrophic lateral sclerosis (ALS) mice. Therefore, the study aimed to determine whether swim training improves copper metabolism by modifying copper metabolism in the skeletal muscles of ALS mice. METHODS: SOD1G93A mice (n = 6 per group) were used as the ALS model, and wild-type B6SJL (WT) mice as controls (n = 6). Mice with ALS were analyzed before the onset of ALS (ALS BEFORE), at baseline ALS (first disease symptoms, trained and untrained, ALS ONSET), and at the end of ALS (last stage disease, trained and untrained, ALS TERMINAL). Copper concentrations and the level of copper metabolism proteins in the skeletal muscles of the lower leg were determined. RESULTS: ALS disease caused a reduction in the copper concentration in ALS TERMINAL untrained mice compared with the ALS BEFORE (10.43 ± 1.81 and 38.67 ± 11.50 µg/mg, respectively, p = .0213). The copper chaperon for SOD1 protein, which supplies copper to SOD1, and ATPase7a protein (copper exporter), increased at the terminal stage of disease by 57% (p = .0021) and 34% (p = .0372), while the CTR1 protein (copper importer) decreased by 45% (p = .002). Swim training moderately affected the copper concentration and the concentrations of proteins responsible for copper metabolism in skeletal muscles. DISCUSSION: The results show disturbances in skeletal muscle copper metabolism associated with ALS progression, which is moderately affected by swim training. From a clinical point of view, exercise in water for ALS patients should be an essential element of rehabilitation for maintaining quality of life.

2.
Mol Neurobiol ; 61(10): 7751-7766, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38430351

RESUMO

Our previous study showed that dimethyl fumarate (DMF) treatment performed within three weeks after intracerebroventricular (ICV) injection of streptozotocin (STZ) attenuated spatial memory impairment, hippocampal neurodegeneration, and neuroinflammation in rats. The present study is aimed at verifying the hypothesis that DMF alleviates late effects of STZ (6 months after ICV injection) which reflects advanced stage of the Alzheimer's disease (AD) in human patients. Spatial memory was assessed with Morris water maze (MWM), general brain level of amyloid ß (Aß) and p-tau was measured by western blot, immunofluorescent labelling of active microglia (IBA1), Aß and p-tau and histological assay of neurodegeneration (Fluoro-Jade C) were performed in hippocampus and cortex. Two-week oral therapy with DMF normalized spatial memory disrupted by STZ but had no influence on general brain level of Aß and p-tau. However, immunofluorescence showed local reduction of Aß aggregates number in parietal cortex and p-tau+ cells in CA2 hippocampal area. Microgliosis was alleviated by DMF in CA1 area and parietal cortex. DMF-treated STZ injected rats showed higher number of Aß containing microglia than untreated group in CA2 and frontal cortex, which may be the result of increased phagocytic activity in these areas after DMF treatment. STZ-induced neurodegeneration was alleviated by DMF in dentate gyrus and frontal cortex. In conclusion DMF treatment exerts beneficial effect on spatial memory in the rat model of late stage of AD, but weakly influences neuropathological features, as only local reduction in number of Aß aggregates, p-tau containing cells, neurodegeneration, and microgliosis was found.


Assuntos
Peptídeos beta-Amiloides , Disfunção Cognitiva , Fumarato de Dimetilo , Microglia , Estreptozocina , Animais , Fumarato de Dimetilo/farmacologia , Estreptozocina/toxicidade , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Ratos , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteínas tau/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Ratos Sprague-Dawley , Memória Espacial/efeitos dos fármacos
3.
J Mol Med (Berl) ; 102(3): 379-390, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38197966

RESUMO

Amyotrophic lateral sclerosis (ALS) may result from the dysfunctions of various mechanisms such as protein accumulation, mitophagy, and biogenesis of mitochondria. The purpose of the study was to evaluate the molecular mechanisms in ALS development and the impact of swim training on these processes. In the present study, an animal model of ALS, SOD1-G93A mice, was used with the wild-type mice as controls. Mice swam five times per week for 30 min. Mice were analyzed before ALS onset (70 days old), at ALS 1 disease onset (116 days old), and at the terminal stage of the disease ALS (130 days old), and compared with the corresponding ALS untrained groups and normalized to the wild-type group. Enzyme activity and protein content were analyzed in the spinal cord homogenates. The results show autophagy disruptions causing accumulation of p62 accompanied by low PGC-1α and IGF-1 content in the spinal cord of SOD1-G93A mice. Swim training triggered a neuroprotective effect, attenuation of NF-l degradation, less accumulated p62, and lower autophagy initiation. The IGF-1 pathway induces pathophysiological adaptation to maintain energy demands through anaerobic metabolism and mitochondrial protection. KEY MESSAGES: The increased protein content of p62 in the spinal cord of SOD1-G93A mice suggests that autophagic clearance and transportation are disrupted. Swim training attenuates neurofilament light destruction in the spinal cord of SOD1-G93A mice. Swim training reducing OGDH provokes suppression of ATP-consuming anabolic pathways. Swim training induces energy metabolic changes and mitochondria protection through the IGF-1 signaling pathway.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Autofagia , Modelos Animais de Doenças , Metabolismo Energético , Fator de Crescimento Insulin-Like I , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232801

RESUMO

In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.


Assuntos
Esclerose Lateral Amiotrófica , NAD , Adenina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Malato Desidrogenase/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Niacinamida/metabolismo
5.
Sci Rep ; 12(1): 1825, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115578

RESUMO

Vitamin D is necessary for musculoskeletal health, however, the supplementation of vitamin D above the sufficiency level does not bring additional bone mass density (BMD), unlike physical exercise which enhances the bone formatting process. Regular physical activity has been shown to upregulate VDR expression in muscles and to increase circulating vitamin D. Here we investigate whether a single bout of exercise might change 25(OH)D3 blood concentration and how it affects metabolic response to exercise. Twenty-six boys, 13.8 years old (SD ± 0.7) soccer players, participated in the study. The participants performed one of two types of exercise: the first group performed the VO2max test until exhaustion, and the second performed three times the repeated 30 s Wingate Anaerobic Test (WAnT). Blood was collected before, 15 min and one hour after the exercise. The concentration of 25(OH)D3, parathyroid hormone (PTH), interleukin-6 (IL-6), lactate, non-esterified fatty acids (NEFA) and glycerol were determined. 25(OH)D3 concentration significantly increased after the exercise in all boys. The most prominent changes in 25(OH)D3, observed after WAnT, were associated with the rise of PTH. The dimensions of response to the exercises observed through the changes in the concentration of 25(OH)D3, PTH, NEFA and glycerol were associated with the significant increases of IL-6 level. A single bout of exercise may increase the serum's 25(OH)D3 concentration in young trained boys. The intensive interval exercise brings a more potent stimulus to vitamin D fluctuations in young organisms. Our results support the hypothesis that muscles may both store and release 25(OH)D3.


Assuntos
Calcifediol/sangue , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Hormônio Paratireóideo/sangue , Aptidão Física/fisiologia , Adolescente , Atletas , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Humanos , Interleucina-6/sangue , Ácido Láctico/sangue , Masculino , Projetos Piloto , Testes de Função Respiratória
6.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769048

RESUMO

(1) Background: Amyotrophic lateral sclerosis (ALS) is an incurable, neurodegenerative disease. In some cases, ALS causes behavioral disturbances and cognitive dysfunction. Swimming has revealed a neuroprotective influence on the motor neurons in ALS. (2) Methods: In the present study, a SOD1-G93A mice model of ALS were used, with wild-type B6SJL mice as controls. ALS mice were analyzed before ALS onset (10th week of life), at ALS 1 onset (first symptoms of the disease, ALS 1 onset, and ALS 1 onset SWIM), and at terminal ALS (last stage of the disease, ALS TER, and ALS TER SWIM), and compared with wild-type mice. Swim training was applied 5 times per week for 30 min. All mice underwent behavioral tests. The spinal cord was analyzed for the enzyme activities and oxidative stress markers. (3) Results: Pre-symptomatic ALS mice showed increased locomotor activity versus control mice; the swim training reduced these symptoms. The metabolic changes in the spinal cord were present at the pre-symptomatic stage of the disease with a shift towards glycolytic processes at the terminal stage of ALS. Swim training caused an adaptation, resulting in higher glutathione peroxidase (GPx) and protection against oxidative stress. (4) Conclusion: Therapeutic aquatic activity might slow down the progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Glutationa Peroxidase/metabolismo , Locomoção/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/metabolismo , Natação/fisiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Camundongos Transgênicos/metabolismo , Camundongos Transgênicos/fisiologia , Microglia/metabolismo , Microglia/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Estresse Oxidativo/fisiologia , Medula Espinal/fisiopatologia , Superóxido Dismutase/metabolismo
7.
Sci Rep ; 11(1): 20899, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686697

RESUMO

We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Músculo Esquelético/fisiologia , Atrofia Muscular/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Natação/fisiologia , Animais , Modelos Animais de Doenças , Proteína Forkhead Box O3/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Superóxido Dismutase-1/metabolismo , Proteínas com Motivo Tripartido/metabolismo
8.
Nutrients ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352920

RESUMO

STUDY DESIGN: A double-blinded, randomized controlled trial. BACKGROUND: Surgery is effective in reducing pain intensity in patients with cervical disc disease. However, functional measurements demonstrated that the results have been not satisfactory enough. Thus, rehabilitation programs combined with the supplementation of vitamin D could play an essential role. METHODS: The study recruited 30 patients, aged 20 to 70 years, selected for anterior cervical interbody fusion (ACIF). The patients were randomly divided into the placebo (Pl) and vitamin D (3200 IU D3/day) supplemented groups. The functional tests limits of stability (LOS), risk of falls (RFT), postural stability (PST), Romberg test, and foot pressure distribution were performed before supplementation (BS-week 0), five weeks after supplementation (AS-week 5), four weeks after surgery (BSVR-week 9), and 10 weeks after supervising rehabilitation (ASVR-week 19). RESULTS: The concentration of 25(OH)D3 in the serum, after five weeks of supplementation, was significantly increased, while the Pl group maintained the same. The RFT was significantly reduced after five weeks of vitamin D supplementation. Moreover, a further significant decrease was observed following rehabilitation. In the Pl group, no changes in the RFT were observed. The overall postural stability index (OSI), LOS, and the outcomes of the Romberg test significantly improved in both groups; however, the effects on the OSI were more pronounced in the D3 group at the end of the rehabilitation program. CONCLUSIONS: Our data suggest that vitamin D supplementation positively affected the rehabilitation program in patients implemented four weeks after ACIF by reducing the risk of falls and improving postural stability.


Assuntos
Vértebras Cervicais/cirurgia , Equilíbrio Postural/fisiologia , Fusão Vertebral/reabilitação , Vitamina D/administração & dosagem , Vitaminas/administração & dosagem , Acidentes por Quedas/prevenção & controle , Adulto , Idoso , Análise de Variância , Calcifediol/sangue , Método Duplo-Cego , Feminino , , Humanos , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Pressão , Fusão Vertebral/métodos , Fatores de Tempo , Adulto Jovem
9.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316389

RESUMO

(1) The primary involvement in stress-induced disturbances in skeletal muscles is assigned to the release of glucocorticoids (GCs). The current study aims to investigate the impact of the biphasic action of the chronic stress response (CSR) induced by the electrical stimulation of the bed nucleus of the stria terminalis (BST) effects on muscle atrophy and aerobic energy metabolism in soleus (SOL) and extensor digitorum longus (EDL) muscles. (2) Male Wistar rats (n = 17) were used. The rats were divided randomly into three groups: the BST two weeks (ST2), four weeks (ST4), and the sham (SHM) electrically stimulated group. The plasma corticosterone (CORT) and irisin concentration were measured. Glucocorticoid and mineralocorticoid receptors (GR and MR), 11ß-hydroxysteroid dehydrogenase type 1 and 2 (HSD11B1 and HSD11B2), atrogin-1, and insulin-like growth factor-1 (IGF-1) level were determined in SOL and EDL muscles. Citrate synthase (CS) activity was measured in both muscles. (3) We found elevated plasma concentration of CORT and irisin, raised the level of GR in SOL muscle, and the higher level of MR in both muscles in the ST4 group. The level of HSD11B1 was also higher in the ST4 group compared to the SHM group. Moreover, we observed increased activity of CS in SOL. (4) We suggest that biphasic action of the glucocorticoid induced by the CSR occurs and causes dysregulation of proteins involved in muscle atrophy and aerobic energy metabolism. Our findings potentially contribute to a better understanding of the mechanisms by which GCs and the CSR may regulate muscle atrophy and energy preservation of the red muscle.


Assuntos
Estimulação Elétrica/efeitos adversos , Glucocorticoides/metabolismo , Atrofia Muscular/etiologia , Receptores de Glucocorticoides/metabolismo , Aerobiose , Animais , Respiração Celular , Corticosterona/sangue , Metabolismo Energético , Fibronectinas/metabolismo , Masculino , Atrofia Muscular/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Regulação para Cima
10.
Nutrients ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547377

RESUMO

BACKGROUND: The introduction of early rehabilitation exercise is the foundation of treatment post-Posterior lumbar interbody fusion (PLIF) surgery, and the search for additional sources of reinforcement physiotherapy seems to be very important. METHODS: The patients were randomly divided into the vitamin D3 (n = 15; D3) supplemented group and received 3200 IU per day for five weeks before surgery and the placebo group (n = 18; Pl) received vegetable oil during the same time. The patients began the supervisor rehabilitation program four weeks after surgery. RESULTS: The limits of stability (LOS) were significantly improved in the D3 group after 5 and 14 weeks (p < 0.05), while in the Pl group, progress was only observed after 14 weeks (p < 0.05). The LOS were also higher in the D3 group than in the Pl group after five weeks of supervised rehabilitation (p < 0.05). In the postural stability (PST) test, significant progress was observed in the D3 group after 14 weeks (p < 0.02). In addition, neither rehabilitation nor supplementation had significant effects on the risk of falls (RFT). CONCLUSIONS: Vitamin D supplementation seems to ameliorate the effects of an early postoperative rehabilitation program implemented four weeks after posterior lumbar interbody fusion. Early physiotherapy treatment after PLIF surgery combined with vitamin D supplementation appears to be a very important combination with regard to the patients' recovery process.


Assuntos
Colecalciferol/administração & dosagem , Suplementos Nutricionais , Terapia por Exercício/métodos , Equilíbrio Postural , Fusão Vertebral/reabilitação , Acidentes por Quedas/prevenção & controle , Adulto , Idoso , Feminino , Humanos , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/prevenção & controle , Período Pós-Operatório , Recuperação de Função Fisiológica , Resultado do Tratamento , Adulto Jovem
11.
Oxid Med Cell Longev ; 2019: 6835341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281588

RESUMO

Recent studies show that vitamin D deficiency may be responsible for muscle atrophy. The purpose of this study was to investigate markers of muscle atrophy, signalling proteins, and mitochondrial capacity in patients with chronic low back pain with a focus on gender and serum vitamin D level. The study involved patients with chronic low back pain (LBP) qualified for posterior lumbar interbody fusion (PLIF). Patients were divided into three groups: supplemented (SUPL) with vitamin D (3200 IU/day for 5 weeks), placebo with normal levels of vitamin D (SUF), and the placebo group with vitamin D deficiency (DEF). The marker of muscle atrophy including atrogin-1 and protein content for IGF-1, Akt, FOXO3a, PGC-1α, and citrate synthase (CS) activity were determined in collected multifidus muscle. In the paraspinal muscle, IGF-1 levels were higher in the SUF group as compared to both the SUPL and DEF groups (p < 0.05). In the SUPL group, we found significantly increased protein content for pAkt (p < 0.05) and decreased level of FOXO3a (p < 0.05). Atrogin-1 content was significantly different between men and women (p < 0.05). The protein content of PGC-1α was significantly higher in the SUF group as compared to the DEF group (p < 0.05). CS activity in the paraspinal muscle was higher in the SUPL group than in the DEF group (p < 0.05). Our results suggest that vitamin D deficiency is associated with elevated oxidative stress, muscle atrophy, and reduced mitochondrial function in the multifidus muscle. Therefore, vitamin D-deficient LBP patients might have reduced possibilities on early and effective rehabilitation after PLIF surgery.


Assuntos
Dor Lombar/etiologia , Mitocôndrias/metabolismo , Deficiência de Vitamina D/complicações , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular
12.
Front Pharmacol ; 10: 527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191300

RESUMO

The aim of this experimental study was to assess whether 5 weeks of preoperative supplementation with vitamin D affects the intensity of pain and the level of inflammatory markers in patients undergoing posterior lumbar interbody fusion (PLIF) followed by rehabilitation. 42 patients were divided, by double-blind randomization, into two groups: supplemented (SUPL) vitamin D (3200 IU dose of vitamin D/day for 5 weeks) and placebo group (PL) treated with vegetable oil. The 10-week program of early rehabilitation (3 times a week) was initiated 4 weeks following PLIF. Measurements of serum 25(OH)D3 and CRP, IL-6, TNF-α, and IL-10 were performed. Pain intensity was measured using VAS. After supplementation with vitamin D serum, the concentration of 25(OH)D3 significantly increased in the SUPL group (∗ p < 0.005) and was significantly higher as compared to the PL group (∗ p < 0.001). A significant reduction in pain intensity was observed 4 weeks after surgery and after rehabilitation in both groups. In the SUPL group, serum CRP and IL-6 concentration significantly decreased after rehabilitation, compared with the postsurgical level (a p < 0.04). The level of TNF-α was significantly lower after rehabilitation only in the supplemented group (∗ p < 0.02). There were no significant changes in the IL-10 level in both groups during the study. Our data indicate that supplementation with vitamin D may reduce systemic inflammation and when combined with surgery and early postsurgical rehabilitation, it may decrease the intensity of pain in LBP patients undergoing PLIF. Data indicate that LBP patients undergoing spine surgery should use vitamin D perioperatively as a supplement.

13.
Eur J Appl Physiol ; 119(4): 825-839, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830277

RESUMO

PURPOSE: This review provides a current perspective on the mechanism of vitamin D on skeletal muscle function with the emphasis on oxidative stress, muscle anabolic state and muscle energy metabolism. It focuses on several aspects related to cellular and molecular physiology such as VDR as the trigger point of vitamin D action, oxidative stress as a consequence of vitamin D deficiency. METHOD: The interaction between vitamin D deficiency and mitochondrial function as well as skeletal muscle atrophy signalling pathways have been studied and clarified in the last years. To the best of our knowledge, we summarize key knowledge and knowledge gaps regarding the mechanism(s) of action of vitamin D in skeletal muscle. RESULT: Vitamin D deficiency is associated with oxidative stress in skeletal muscle that influences the mitochondrial function and affects the development of skeletal muscle atrophy. Namely, vitamin D deficiency decreases oxygen consumption rate and induces disruption of mitochondrial function. These deleterious consequences on muscle may be associated through the vitamin D receptor (VDR) action. Moreover, vitamin D deficiency may contribute to the development of muscle atrophy. The possible signalling pathway triggering the expression of Atrogin-1 involves Src-ERK1/2-Akt- FOXO causing protein degradation. CONCLUSION: Based on the current knowledge we propose that vitamin D deficiency results from the loss of VDR function and it could be partly responsible for the development of neurodegenerative diseases in human beings.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Metabolismo Energético/fisiologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Vitamina D/metabolismo , Deficiência de Vitamina D/metabolismo
14.
Int J Mol Sci ; 20(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634386

RESUMO

Metabolic reprogramming in skeletal muscles in the human and animal models of amyotrophic lateral sclerosis (ALS) may be an important factor in the diseases progression. We hypothesized that swim training, a modulator of cellular metabolism via changes in muscle bioenergetics and oxidative stress, ameliorates the reduction in muscle strength in ALS mice. In this study, we used transgenic male mice with the G93A human SOD1 mutation B6SJL-Tg (SOD1G93A) 1Gur/J and wild type B6SJL (WT) mice. Mice were subjected to a grip strength test and isolated skeletal muscle mitochondria were used to perform high-resolution respirometry. Moreover, the activities of enzymes involved in the oxidative energy metabolism and total sulfhydryl groups (as an oxidative stress marker) were evaluated in skeletal muscle. ALS reduces muscle strength (-70% between 11 and 15 weeks, p < 0.05), modulates muscle metabolism through lowering citrate synthase (CS) (-30% vs. WT, p = 0.0007) and increasing cytochrome c oxidase and malate dehydrogenase activities, and elevates oxidative stress markers in skeletal muscle. Swim training slows the reduction in muscle strength (-5% between 11 and 15 weeks) and increases CS activity (+26% vs. ALS I, p = 0.0048). Our findings indicate that swim training is a modulator of skeletal muscle energy metabolism with concomitant improvement of skeletal muscle function in ALS mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Metabolismo Energético , Força Muscular , Músculo Esquelético/metabolismo , Natação , Esclerose Lateral Amiotrófica/etiologia , Animais , Biomarcadores , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/fisiopatologia , Estresse Oxidativo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
15.
Oxid Med Cell Longev ; 2018: 4671213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29955246

RESUMO

Recent studies indicate that activation of hypothalamus-pituitary-adrenocortical axis (HPA) plays the crucial role in stress response, while several lines of evidence mark the bed nucleus of the stria terminalis (BST) as a major mediator of the HPA axis responses to stress. The purpose of this study was to investigate the influence of the corticosterone flux induced by the electrical stimulation of BST on markers of free radical damage of lipids and proteins and antioxidant enzyme activity in skeletal muscle of rats. The male Wistar rats were used and assigned to one of three groups: sham-operated (SHM; n = 6), two-week (ST2; n = 6), and four-week stimulated (ST4; n = 5) groups. Blood, soleus, and extensor digitorum longus muscles were collected. The chronic, 4-week electrical stimulation of the BST evokes increased plasma corticosterone concentration, which resulted in oxidative stress in skeletal muscles. We found higher level of lipid peroxidation markers, lower level of protein oxidation marker, and elevated antioxidant enzyme activity in both muscles. Our findings have also potential implication showing that reaction to the long-term "psychological stress" may lead to free radical damage of muscle.


Assuntos
Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/imunologia , Estresse Fisiológico/imunologia , Animais , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
16.
Oxid Med Cell Longev ; 2018: 5940748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849903

RESUMO

Recently, in terms of amyotrophic lateral sclerosis (ALS), much attention has been paid to the cell structures formed by the mitochondria and the endoplasmic reticulum membranes (MAMs) that are involved in the regulation of Ca2+ signaling, mitochondrial bioenergetics, apoptosis, and oxidative stress. We assumed that remodeling of these structures via swim training may accompany the prolongation of the ALS lifespan. In the present study, we used transgenic mice with the G93A hmSOD1 gene mutation. We examined muscle energy metabolism, oxidative stress parameters, and markers of MAMs (Caveolin-1 protein level and cholesterol content in crude mitochondrial fraction) in groups of mice divided according to disease progression and training status. The progression of ALS was related to the lowering of Caveolin-1 protein levels and the accumulation of cholesterol in a crude mitochondrial fraction. These changes were associated with aerobic and anaerobic energy metabolism dysfunction and higher oxidative stress. Our data indicated that swim training prolonged the lifespan of ALS mice with accompanying changes in MAM components. Swim training also maintained mitochondrial function and lowered oxidative stress. These data suggest that modification of MAMs might play a crucial role in the exercise-induced deceleration of ALS development.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Colesterol/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Natação/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos
17.
Eur J Appl Physiol ; 118(1): 143-151, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143122

RESUMO

PURPOSE: The aim of the study was to evaluate markers of oxidative stress and vitamin D receptor in paraspinal muscles in low back pain patients with vitamin D deficiency, with normal level of vitamin D, and after 5 weeks of vitamin D supplementation. METHODS: Patients were divided into three groups: supplemented (SUP) with vitamin D, placebo with normal concentration of vitamin D (SUF), and the placebo group with vitamin D deficiency (DEF). The concentration of serum vitamin D was measured before and after the supplementation with vitamin D (3200 IU/ day for 5 weeks). Markers of lipid and protein peroxidation, the activity of antioxidant enzymes, and protein content of vitamin D receptor was determined in multifidus muscle of patients. RESULTS: Vitamin D supplementation increased serum level of 25(OH)D3 (p < 0.001). In paraspinal muscle level of 8-isoprostanes and protein carbonyls was higher in DEF group as compared to the SUP group (p < 0.05). Antioxidant enzyme activity and vitamin D receptor in paraspinal muscle altered between the groups with different serum vitamin D concentration. The cytosolic superoxide dismutase and glutathione peroxidase activities were significantly higher in DEF group as compared to the SUP group (p < 0.05). CONCLUSIONS: An attenuation of markers of free radical damage of lipids and proteins was observed in participants supplemented with Vitamin D. Antioxidant enzyme activities in skeletal muscle differ among patients with different serum vitamin D concentration. Monitoring oxidative stress and VDR protein content might be useful for future studies on the mechanism(s) of vitamin D action in muscle.


Assuntos
Antioxidantes/farmacologia , Dor Lombar/metabolismo , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo , Vitamina D/farmacologia , Vitaminas/farmacologia , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Feminino , Humanos , Dor Lombar/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/administração & dosagem , Vitamina D/uso terapêutico , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA