Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0367423, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38578091

RESUMO

Vibrio is a genus of halophilic, gram-negative bacteria found in estuaries around the globe. Integral parts of coastal cultures often involve contact with vectors of pathogenic Vibrio spp. (e.g., consuming raw shellfish). High rates of mortality from certain Vibrio spp. infections demonstrate the need for an improved understanding of Vibrio spp. dynamics in estuarine regions. Our study assessed meteorological, hydrographic, and biological correlates of Vibrio parahaemolyticus and V. vulnificus at 10 sites in the Eastern Mississippi Sound System (EMSS) from April to October 2019. During the sampling period, median abundances of V. parahaemolyticus and V. vulnificus were 2.31 log MPN/L and 2.90 log MPN/L, respectively. Vibrio spp. dynamics were largely driven by site-based variation, with sites closest to freshwater inputs having the highest abundances. The E-W wind scalar, which affects Ekman transport, was a novel Vibrio spp. correlate observed. A potential salinity effect on bacterial-particle associations was identified, where V. vulnificus was associated with larger particles in conditions outside of their optimal salinity. Additionally, V. vulnificus abundances were correlated to those of harmful algal species that did not dominate community chlorophyll. Correlates from this study may be used to inform the next iteration of regionally predictive Vibrio models and may lend additional insight to Vibrio spp. ecology in similar systems. IMPORTANCE: Vibrio spp. are bacteria found in estuaries worldwide; some species can cause illness and infections in humans. Relationships between Vibrio spp. abundance, salinity, and temperature are well documented, but correlations to other environmental parameters are less understood. This study identifies unique correlates (e.g., E-W wind scalar and harmful algal species) that could potentially inform the next iteration of predictive Vibrio models for the EMSS region. Additionally, these correlates may allow existing environmental monitoring efforts to be leveraged in providing data inputs for future Vibrio risk models. An observed correlation between salinity and V. vulnificus/particle-size associations suggests that predicted environmental changes may affect the abundance of Vibrio spp. in certain reservoirs, which may alter which vectors present the greatest vibrio risk.


Assuntos
Estuários , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/crescimento & desenvolvimento , Alabama , Dinâmica Populacional , Salinidade , Vibrioses/microbiologia , Vibrioses/epidemiologia , Água do Mar/microbiologia , Microbiologia da Água
2.
J Geophys Res Oceans ; 127(3): e2021JC018007, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865795

RESUMO

As tides propagate inland, they become distorted by channel geometry and river discharge. Tidal dynamics in fluvial-marine transitions are commonly observed in high-energy tidal environments with relatively steady river conditions, leaving the effects of variable river discharge on tides and longitudinal changes poorly understood. To study the effects of variable river discharge on tide-river interactions, we studied a low-energy tidal environment where river discharge ranges several orders of magnitude, the diurnal microtidal Tombigbee River-Mobile Bay fluvial-marine transition, using water level and velocity observations from 21 stations. Results showed that diurnal tidal attenuation was reduced by the width convergence in seaward reaches and height convergence of the landward backwater reaches, with the channel convergence change location ∼40-50 km inland of the bayhead and seaward of the largest bifurcation. River events amplified tides in seaward regions and attenuated tides in landward regions. This created a region of river-induced peak amplitude seaward of the flood limit (i.e., bidirectional-unidirectional current transition), allowing more tidal energy to propagate inland. Tidal currents were attenuated and delayed more by river discharge than water levels, making the phase lag dynamic. The river impacts on the tides were delineated longitudinally and shifted seaward as river discharge increased, ranging up to ∼180 km. Results indicated the longitudinal shifts of river impacts on tides in alluvial systems can be estimated analytically using the ratio of river discharge to tidal discharge and the geometric convergence of the system. Our simple analytical theory provides a pathway for understanding the tide-river-geomorphic equilibrium along increasingly dynamic coasts.

3.
PeerJ ; 9: e11862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447622

RESUMO

The benthic impact of aquaculture waste depends on the area and extent of waste accumulation on the sediment surface below and around the farm. In this study we investigated the effect of flow on biodeposit transport and initial deposition by calculating a rough aquaculture "footprint" around an oyster aquaculture farm in the Damariscotta River, ME. We also compared a site under the farm to a downstream "away" site calculated to be within the footprint of the farm. We found similar sediment biogeochemical fluxes, geochemical properties and macrofaunal communities at the site under the farm and the away site, as well as low organic enrichment at both sites, indicating that biodeposition in this environment likely does not have a major influence on the benthos. To predict accumulation of biodeposits, we measured sediment erodibility under a range of shear stresses and found slightly higher erosion rates at the farm than at the away site. A microalgal mat was observed at the sediment surface in many sediment cores. Partial failure of the microalgal mat was observed at high shear velocity, suggesting that the mat may fail and surface sediment erode at shear velocities comparable to or greater than those calculated fromin situ flow measurements. However, this study took place during neap tide, and it is likely that peak bottom velocities during spring tides are high enough to periodically "clear" under-farm sediment of recent deposits.

4.
Harmful Algae ; 72: 46-64, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29413384

RESUMO

Harmful Algal Blooms (HABs) of Karenia brevis have been documented along coastal waters of every state bordering the Gulf of Mexico (GoM). Some Gulf Coast locations, such as Florida and Texas, suffer from recurrent intense and spatially large blooms, while others such as Mississippi seem to rarely observe them. The main objective of this work is to understand the dynamics that led to the K. brevis bloom in Mississippi coastal waters in fall 2015. Blooms of K. brevis from the Florida Panhandle region are often advected westward towards the Mississippi-Alabama coast; however there is interannual variability in their presence and intensity in Mississippi coastal waters. The 2015 K. brevis bloom was compared to the 2007 Florida Panhandle K. brevis bloom, which showed a westward advection pattern, but did not intensify along the Mississippi coast. Cell counts and flow cytometry were obtained from the Mississippi Department of Marine Resources, Alabama Department of Public Health, Florida Fish and Wildlife Conservation Commission and The University of Southern Mississippi. Ocean color satellite imagery from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite was used to detect and delineate the blooms in 2007 and 2015. Two different regional applications of NCOM-Navy Coastal Ocean Model (1-km resolution NCOM-GoM/Gulf of Mexico and 6-km resolution NCOM-IASNFS/Intra Americas Sea Nowcast Forecast System) were used to understand the circulation and transport pathways. A Lagrangian particle tracking software was used to track the passive movement of particles released at different locations for both bloom events. Ancillary data (e.g., nutrients, wind, salinity, river discharge) from local buoys, monitoring stations and coincident oceanographic cruises were also included in the analysis. The blooms of K. brevis reached the Mississippi coast both years; however, the bloom in 2007 lasted only a few days and there is no evidence that it entered the Mississippi Sound. Two major differences were observed between both years. First, circulation patterns in 2015 resulting from an intense westward-northwestward that persisted until December allowed for continuous advection, whereas this pattern was not evident in 2007. Second, local river discharge was elevated throughout late fall 2015 while 2007 was below the average. Thus, elevated discharge may have provided sufficient nutrients for bloom intensification. These results illustrate the complex, but important interactions in coastal zones. Further, they emphasize the importance in establishing comprehensive HAB monitoring programs, which facilitate our understanding of nutrient and phytoplankton dynamics, and stress the importance for multi-agency cooperation across state boundaries.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Proliferação Nociva de Algas , Coleta de Dados , Florida , Previsões , Golfo do México , Mississippi , Modelos Biológicos , Comunicações Via Satélite
5.
Sensors (Basel) ; 16(4)2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27089337

RESUMO

This project addresses the need for an expansion in the monitoring of marine environments by providing a detailed description of a low cost, robust, user friendly sonde, built on Arduino Mega 2560 (Mega) and Arduino Uno (Uno) platforms. The sonde can be made without specialized tools or training and can be easily modified to meet individual application requirements. The platform allows for internal logging of multiple parameters of which conductivity, temperature, and GPS position are demonstrated. Two design configurations for different coastal hydrographic applications are highlighted to show the robust and versatile nature of this sensor platform. The initial sonde design was intended for use on a Lagrangian style surface drifter that recorded measurements of temperature; salinity; and position for a deployment duration of less than 24 h. Functional testing of the sensor consisted of a 55 h comparison with a regularly maintained water quality sensor (i.e., YSI 6600 sonde) in Mobile Bay, AL. The temperature and salinity data were highly correlated and had acceptable RMS errors of 0.154 °C and 1.35 psu for the environmental conditions. A second application using the sonde platform was designed for longer duration (~3-4 weeks); subsurface (1.5-4.0 m depths) deployment, moored to permanent structures. Design alterations reflected an emphasis on minimizing power consumption, which included the elimination of the GPS capabilities, increased battery capacity, and power-saving software modifications. The sonde designs presented serve as templates that will expand the hydrographic measurement capabilities of ocean scientists, students, and teachers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA