Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34579456

RESUMO

Frost is one factor that causes extensive yield losses globally. A study was conducted to evaluate frost damage under field conditions and assess the genetic variation of flowers converting into pods. Diverse faba bean genotypes were evaluated under four growing seasons in a randomized complete block design: three at the University of Sydney, Narrabri, Australia (2014-2016) with three sowing dates, and one at the Agricultural Research Station, Dirab, Riyadh, Saudi Arabia (2016/2017) in one sowing. Visual methods were used to estimate frost damage and record the development of pods. Radiation frost in 2014 (Narrabri) damaged lower pods, while advection frost in 2016/2017 (Dirab) damaged upper pods. The radiation frost formed immediately above the ground; therefore, flowers and pods of taller plants minimized the damage because of their long distance from the ground. The earliest (mid-April) and middle sowing (7 May) suffered more by frost, while a delay in sowing (last week in May) led to frost escape or minor damage. The genotypes IX474/4-3 and 11NF010a-2 showed low sensitivity to frost at the vegetative and reproductive stages. Flowers developed at the beginning of flowering had a faster and higher pod formation rate (41-43%) than those formed later and contributed more to yields. Therefore, a severe frost at the beginning of flowering can cause a significant yield loss as these flowers are the most productive. The frost-tolerant genotypes, and faster and higher pod forming rates, identified in this study can be exploited to breed better varieties in the future.

2.
Saudi J Biol Sci ; 26(1): 74-82, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622409

RESUMO

Seven landraces of cowpea [Vigna unguiculata (L.) Walp.] were assessed for genetic variability in total proteins, protein fractions viz. albumins, globulins, prolamins, and glutelins by SDS-polyacrylamide gel electrophoresis and DNA polymorphism using sequence-related amplified polymorphisms (SRAP) markers. The solubility-based protein fractionation data indicated that the salt soluble fraction (globulin) and water-soluble fraction (albumin) proteins were the predominant fractions in cowpea seeds comprising 45-50.3% and 31.2-35.5% of total soluble proteins, respectively. The electrophoretic pattern revealed the molecular heterogeneity among total proteins as well as different protein fractions. The molecular weights of protein bands obtained by SDS-PAGE varied between 10 to 250, 15 to 110, 15 to 150, and 15 to 130 kDa for total proteins, albumins, globulins, and glutelins, respectively. A large number of bands were found common to the various landraces, indicative of their close relationship with one another. However, a few bands distinctive to some specific landraces were also detected, indicating varietal differences. A 34 SRAP primer pair combination generated a total of 1003 amplicons (loci) showed 100% polymorphism with an average of 0.93 polymorphism information content (PIC) value. Landraces displayed an average 0.50 similarity coefficient which clustered the landraces corresponding to their growth habit in main clusters and to their geographical origin in subcultures. Molecular and biochemical analysis were correlated with a medium level (Mantel test, r = 0.56, P < 0.02). These findings revealed that seed proteins and DNA polymorphism provide valuable information regarding the variability among landraces and this information could be utilized for breeding purposes in the enhancement of protein quality and quantity in grain legumes.

3.
3 Biotech ; 8(12): 502, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30498675

RESUMO

Drought and salinity are the major factors that limit the faba bean (Vicia faba L.) production worldwide. The aim of this study is to identify the water stress differentially expressed genes (DEGs) through the root transcriptome analyses of the drought-tolerant Hassawi 2 genotype at vegetative and flowering stages. A total of 624.8 M high-quality Illumina reads were generated and assembled into 198,155 all-unigenes with a mean length of 738 bp and an N50 length of 1347 bp. Among all-unigenes, 78,262 were assigned to non-redundant (Nr), 66,254 to nucleotide (Nt), 54,034 to KEGG, and 43,913 to gene ontology (GO) annotations. A total of 36,834 and 35,510 unigenes were differentially expressed at the vegetative and flowering stages of Hassawi 2 under drought stress, respectively. The majority of unigenes were down-regulated at both developmental stages. However, the number of genes up-regulated (15,366) at the flowering stage exceeded the number of those up-regulated (14,097) at the vegetative stage, and the number of genes down-regulated (20,144) at the flowering stage was smaller than the number of those down-regulated (22,737) at the vegetative stage. The drought stress-responsive differentially expressed unigenes coded for various regulatory proteins, including protein kinases and phosphatases, transcription factors and plant hormones and functional proteins including enzymes for osmoprotectant, detoxification and transporters were differentially expressed, most of which were largely up-regulated. Moreover, a substantial proportion of the DEGs identified in this study were novel, most exhibited a significant change in their expression levels under water stress, making them an unexploited resource that might control specific responses to drought stress in the faba bean. Finally, qRT-PCR results were found almost consistent with the results of next-generation sequencing. Our data will help in understanding the drought tolerance mechanisms in plants and will provide resources for functional genomics.

4.
Saudi J Biol Sci ; 25(1): 15-21, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29379350

RESUMO

This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC-MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

5.
Electron. j. biotechnol ; 19(3): 18-25, May 2016. ilus
Artigo em Inglês | LILACS | ID: lil-787004

RESUMO

Background: The present study was undertaken towards the development of SSR markers and assessing genetic relationships among 32 date palm (Phoenix dactylifera L.) representing common cultivars grown in different geographical regions in Saudi Arabia. Results: Ninety-three novel simple sequence repeat markers were developed and screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs were dinucleotide, 25% tri, 3% tetra and 1% penta nucleotide motives. Twenty-two primers generated a total of 91 alleles with a mean of 4.14 alleles per locus and 100% polymorphism percentage. A 0.595 average polymorphic information content and 0.662 primer discrimination power values were recorded. The expected and observed heterozygosities were 0.676 and 0.763 respectively. Pair-wise similarity values ranged from 0.06 to 0.89 and the overall cultivars averaged 0.41. The UPGMA cluster analysis recovered by principal coordinate analysis illustrated that cultivars tend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) revealed that genetic variation among and within cultivars were 27% and 73%, respectively according to geographical distribution of cultivars. Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).


Assuntos
Polimorfismo Genético , Repetições de Microssatélites , Phoeniceae/genética , Arábia Saudita , Variação Genética , Produção Agrícola , Heterozigoto
6.
Saudi J Biol Sci ; 22(3): 340-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25972757

RESUMO

Forty faba bean (Vicia faba L.) genotypes were evaluated for their agro-morphological performance and molecular diversity under Central Region of Saudi Arabia conditions during 2010-11 and 2011-12 seasons. Field performance results showed that faba genotypes exhibited a significant amount of variation for their agro-morphological studied parameters. Giza40 recorded the tallest genotype (139.5 cm), highest number of seeds per plants (100.8), and the highest seed yield per plant (70.8 g). The best performing genotypes were Giza40, FLIP03-014FB, Gazira1 and Goff1. Genetic variability among genotypes was determined using Sequence Related Amplified Polymorphism (SRAP) and Amplified Fragment Length Polymorphism (AFLP) markers. A total of 183 amplified fragments (alleles) and 1758 polymorphic fragments (bands) in SRAP and 202 alleles and 716 bands in AFLP were obtained using six SRAP and four AFLP primer combinations respectively. Polymorphism information content (PIC) values for AFLP and SRAP markers were higher than 0.8, indicating the existence of a considerable amount of genetic diversity among faba tested genotypes. The UPGMA based clustering of faba genotypes was largely based on origin and/or genetic background. Result of cluster analysis based on SRAP showed weak and not significant correlation while, it was highly significant based on AFLP analysis with agro-morphological characters (r = 0.01, p > 0.54 and r = 0.26, p < 0.004 respectively). Combined SRAP and AFLP markers proved to be significantly useful for genetic diversity assessment at molecular level. They exhibited high discrimination power, and were able to distinguish the faba bean genotypes with high efficiency and accuracy levels.

7.
Int J Mol Sci ; 15(1): 277-95, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24378852

RESUMO

Morphological, nutritional and molecular analyses were carried out to assess genetic diversity among 35 introduced lentil genotypes (Lens culinaris Medik.). The genotypes exhibited significant differences for their field parameters and some of them showed noticeable superiority. The nutritional and proximate analysis showed that some genotypes were excellent sources of proteins, essential amino acids, minerals, anti-oxidants, total phenolic contents (TPC) and total flavonoid contents (TFC) and hence, highlights lentil nutritional and medicinal potential. Sequence-related amplified polymorphism (SRAP) and amplified fragments length polymorphism (AFLP) markers were used to estimate the genetic variability at the molecular level. The existence of a considerable amount of genetic diversity among the tested lentil genotypes was also proven at the molecular level. A total of 2894 polymorphic SRAP and 1625 AFLP loci were successfully amplified using six SRAP and four AFLP primer pair combinations. Polymorphism information content (PIC) values for SRAP and AFLP markers were higher than 0.8, indicating the power and higher resolution of those marker systems in detecting molecular diversity. UPGMA (unweighted pair group method with arithmetic average) cluster analysis based on molecular data revealed large number of sub clusters among genotypes, indicating high diversity levels. The data presented here showed that FLIP2009-64L and FLIP2009-69L could be used as a significant source of yield, total protein, essential amino acids, and antioxidant properties. The results suggest potential lentil cultivation in the central region of Saudi Arabia for its nutritional and medicinal properties, as well as sustainable soil fertility crop.


Assuntos
Variação Genética , Lens (Planta)/genética , Antioxidantes/química , Antioxidantes/metabolismo , Análise por Conglomerados , Flavonoides/química , Flavonoides/metabolismo , Loci Gênicos , Genótipo , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/metabolismo , Fenóis/química , Fenóis/metabolismo , Arábia Saudita
8.
Int J Mol Sci ; 13(12): 16457-71, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23211669

RESUMO

Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity and relationship among 58 faba bean (Vicia faba L.) genotypes. Fourteen SRAP primer combinations amplified a total of 1036 differently sized well-resolved peaks (fragments), of which all were polymorphic with a 0.96 PIC value and discriminated all of the 58 faba bean genotypes. An average pairwise similarity of 21% was revealed among the genotypes ranging from 2% to 65%. At a similarity of 28%, UPGMA clustered the genotypes into three main groups comprising 78% of the genotypes. The local landraces and most of the Egyptian genotypes in addition to the Sudan genotypes were grouped in the first main cluster. The advanced breeding lines were scattered in the second and third main clusters with breeding lines from the ICARDA and genotypes introduced from Egypt. At a similarity of 47%, all the genotypes formed separated clusters with the exceptions of Hassawi 1 and Hassawi 2. Group analysis of the genotypes according to their geographic origin and type showed that the landraces were grouped according to their origin, while others were grouped according to their seed type. To our knowledge, this is the first application of SRAP markers for the assessment of genetic diversity in faba bean. Such information will be useful to determine optimal breeding strategies to allow continued progress in faba bean breeding.


Assuntos
Marcadores Genéticos , Polimorfismo Genético , Análise de Sequência de DNA/métodos , Vicia faba/genética , Genes de Plantas , Variação Genética , Genótipo , Técnicas de Amplificação de Ácido Nucleico/métodos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...