Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 42(4): 1205-1213, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26074649

RESUMO

Observational analyses of running 5 year ocean heat content trends (Ht) and net downward top of atmosphere radiation (N) are significantly correlated (r ∼ 0.6) from 1960 to 1999, but a spike in Ht in the early 2000s is likely spurious since it is inconsistent with estimates of N from both satellite observations and climate model simulations. Variations in N between 1960 and 2000 were dominated by volcanic eruptions and are well simulated by the ensemble mean of coupled models from the Fifth Coupled Model Intercomparison Project (CMIP5). We find an observation-based reduction in N of - 0.31 ± 0.21 W m-2 between 1999 and 2005 that potentially contributed to the recent warming slowdown, but the relative roles of external forcing and internal variability remain unclear. While present-day anomalies of N in the CMIP5 ensemble mean and observations agree, this may be due to a cancelation of errors in outgoing longwave and absorbed solar radiation. KEY POINTS: Observed maximum in ocean heat content trend in early 2000s is likely spuriousNet incoming radiation (N) reduced by 0.31 ± 0.21 W m-2 during the warming pausePresent-day estimates of N may contain opposing errors in radiative components.

2.
Geophys Res Lett ; 41(14): 5167-5174, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25821269

RESUMO

Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate.

3.
Geophys Res Lett ; 41(15): 5620-5628, 2014 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-25821271

RESUMO

Seasonal-to-decadal predictions are inevitably uncertain, depending on the size of the predictable signal relative to unpredictable chaos. Uncertainties can be accounted for using ensemble techniques, permitting quantitative probabilistic forecasts. In a perfect system, each ensemble member would represent a potential realization of the true evolution of the climate system, and the predictable components in models and reality would be equal. However, we show that the predictable component is sometimes lower in models than observations, especially for seasonal forecasts of the North Atlantic Oscillation and multiyear forecasts of North Atlantic temperature and pressure. In these cases the forecasts are underconfident, with each ensemble member containing too much noise. Consequently, most deterministic and probabilistic measures underestimate potential skill and idealized model experiments underestimate predictability. However, skilful and reliable predictions may be achieved using a large ensemble to reduce noise and adjusting the forecast variance through a postprocessing technique proposed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...