Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 12(1): 5366, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508084

RESUMO

Monolayer transition metal dichalcogenide crystals (TMDCs) hold great promise for semiconductor optoelectronics because their bound electron-hole pairs (excitons) are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, excitons can hybridise with cavity photons to form exciton polaritons, which inherit useful properties from their constituents. The ability to manipulate and trap polaritons on a microchip is critical for applications. Here, we create a non-trivial potential landscape for polaritons in monolayer WS2, and demonstrate their trapping and ballistic propagation across tens of micrometers. We show that the effects of dielectric disorder, which restrict the diffusion of WS2 excitons and broaden their spectral resonance, are dramatically reduced for polaritons, leading to motional narrowing and preserved partial coherence. Linewidth narrowing and coherence are further enhanced in the trap. Our results demonstrate the possibility of long-range dissipationless transport and efficient trapping of TMDC polaritons in ambient conditions.

3.
Nanoscale ; 7(9): 4179-86, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25670157

RESUMO

There is great interest in aluminum based plasmonic devices due to the relatively high plasma frequency of this material as well as its low cost and self-passivating oxide layer. The passivation layer provides aluminum plasmonics with the long-term stability required for practical applications. While several studies have investigated the impact of this oxide layer on the plasmon resonances of aluminum nanostructures on glass substrates, little is known about the effect of high-refractive index substrates on these resonances. Here we present an investigation of aluminum V-shaped antennas resonant in the visible on a silicon substrate. Through comparison between numerical and experimental results, we show that the aluminium passivation layer has little effect on the antenna resonances by comparing numerical simulations both with and without. We show, however, that inclusion of the native oxide layer of the silicon substrate in numerical models is critical for achieving good agreement with experimental data. Furthermore, we computationally explore the influence of the 1.5 eV interband transition of aluminum on plasmon resonances, and find that its effect on the material properties of the resonant structures results in narrower resonances in the blue part of the spectrum than if it was not present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...