Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19174, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580387

RESUMO

Current classes of cancer therapeutics have negative side effects stemming from off-target cytotoxicity. One way to avoid this would be to use a drug delivery system decorated with targeting moieties, such as an aptamer, if a targeted aptamer is available. In this study, aptamers were selected against acute myeloid leukemia (AML) cells expressing the MLL-AF9 oncogene through systematic evolution of ligands by exponential enrichment (SELEX). Twelve rounds of SELEX, including two counter selections against fibroblast cells, were completed. Aptamer pools were sequenced, and three candidate sequences were identified. These sequences consisted of two 23-base primer regions flanking a 30-base central domain. Binding studies were performed using flow cytometry, and the lead sequence had a binding constant of 37.5 + / - 2.5 nM to AML cells, while displaying no binding to fibroblast or umbilical cord blood cells at 200 nM. A truncation study of the lead sequence was done using nine shortened sequences, and showed the 5' primer was not important for binding. The lead sequence was tested against seven AML patient cultures, and five cultures showed binding at 200 nM. In summary, a DNA aptamer specific to AML cells was developed and characterized for future drug-aptamer conjugates.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Linhagem Celular Tumoral , Células Cultivadas , Sangue Fetal , Humanos , Ligantes
2.
Free Radic Biol Med ; 134: 133-138, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605714

RESUMO

UV irradiation is a major driver of DNA damage and ultimately skin cancer. UV exposure leads to persistent radicals that generate ROS over prolonged periods of time. Toward the goal of developing long-lasting antioxidants that can penetrate skin, we have designed a ROS-initiated protective (RIP) reagent that, upon reaction with ROS (antioxidant activity), self-cyclizes and then releases the natural product apocynin. Apocynin is a known antioxidant and inhibitor of NOX oxidase enzymes. A key phenol on the compound 1 controls ROS-initiated cyclization and makes 1 responsive to ROS with a EC50 comparable to common antioxidants in an ABTS assay. In an in vitro DNA nicking assay, the RIP reagent prevented DNA strand breaks. In cell-based assays, the reagent was not cytotoxic, apocynin was released only in cells treated with UVR, reduced UVR-induced cell death, and lowered DNA lesion formation. Finally, topical treatment of human skin explants with the RIP reagent reduced UV-induced DNA damage as monitored by quantification of cyclobutane dimer formation and DNA repair signaling via TP53. The reagent was more effective than administration of a catalase antioxidant on skin explants. This chemistry platform will expand the types of ROS-activated motifs and enable inhibitor release for potential use as a long-acting sunscreen.


Assuntos
Antioxidantes/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo , Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Acetofenonas/administração & dosagem , Administração Tópica , Células Cultivadas , Ciclização , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Humanos , Queratinócitos/efeitos da radiação , Oxirredução , Espécies Reativas de Oxigênio , Pele/efeitos da radiação
3.
J Am Chem Soc ; 137(46): 14785-97, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26575890

RESUMO

Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-ß (Aß) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer's disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aß forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aß with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Linhagem Celular , Humanos , Técnicas In Vitro , Simulação de Dinâmica Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...