Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 103(3): 395-411.e5, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201122

RESUMO

Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/normas , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Encéfalo/citologia , Biologia Computacional/métodos , Humanos , Internet , Redes Neurais de Computação , Sistemas On-Line
2.
Artigo em Inglês | MEDLINE | ID: mdl-30201843

RESUMO

Geppetto is an open-source platform that provides generic middleware infrastructure for building both online and desktop tools for visualizing neuroscience models and data and managing simulations. Geppetto underpins a number of neuroscience applications, including Open Source Brain (OSB), Virtual Fly Brain (VFB), NEURON-UI and NetPyNE-UI. OSB is used by researchers to create and visualize computational neuroscience models described in NeuroML and simulate them through the browser. VFB is the reference hub for Drosophila melanogaster neural anatomy and imaging data including neuropil, segmented neurons, microscopy stacks and gene expression pattern data. Geppetto is also being used to build a new user interface for NEURON, a widely used neuronal simulation environment, and for NetPyNE, a Python package for network modelling using NEURON. Geppetto defines domain agnostic abstractions used by all these applications to represent their models and data and offers a set of modules and components to integrate, visualize and control simulations in a highly accessible way. The platform comprises a backend which can connect to external data sources, model repositories and simulators together with a highly customizable frontend.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma/métodos , Drosophila melanogaster/fisiologia , Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso , Neurociências/métodos , Animais , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...