Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Air Soil Pollut ; 229(11): 358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416221

RESUMO

Roads and traffic can be a source of water-bound pollutants, which can percolate through the unsaturated zone to groundwater. Deicing salt is widely used on roads in northern Europe during winter and is usually applied at a time when the temperature is below zero and the soil is partly frozen. Understanding the mechanism by which water-bound pollutants such as deicing salt are transferred from roads to groundwater is highly important for groundwater protection, environmental sustainability and road maintenance. Electrical resistivity tomography (ERT) can be used for tracing the infiltration of deicing salt in different seasons, including the frozen period, as a step towards identifying pollutant infiltration pathways. In this study, a tracer-ERT monitoring method and analytical process was developed and evaluated for use in investigating and demonstrating deicing salt infiltration pathways in road structures in different seasons and weather conditions. The method involves using dissolved sodium chloride as a tracer and monitoring its infiltration using a multi-electrode array system. The tracer tests were performed at the same location in different seasons over a 1-year period. The results indicated high seasonal variation in percolation pattern and flow velocity, with large decreases in December (winter), most likely due to preferential flow paths within the road shoulder. These findings can be applied to other water-soluble pollutants that move from the road surface to groundwater.

2.
Ground Water ; 53(5): 748-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25214009

RESUMO

Groundwater resources are limited and difficult to predict in crystalline bedrock due to heterogeneity and anisotropy in rock fracture systems. Municipal-level governments often lack the resources for traditional hydrogeological tests when planning for sustainable use of water resources. A new methodology for assessing groundwater resources potential (GRP) based on geological and topographical factors using principal component analysis (PCA) and analysis of variance (ANOVA) was developed and tested. ANOVA results demonstrated statistically significant differences in classed variable groups as well as in classed GRP scores with regard to hydrogeological indicators, such as specific capacity (SC) and transmissivity. Results of PCA were used to govern the weight of the variables used in the prediction maps. GRP scores were able to identify 79% of wells in a verification dataset, which had SC values less than the total dataset median. GRP values showed statistically significant correlations using both parametric (using transformed datasets) and non-parametric methods. The method shows promise for municipal or regional level planning in crystalline terrains with high levels of heterogeneity and anisotropy as a hydrogeologically and statistically based tool to assist in assessing groundwater resources. The methodology is executed in a geographic information systems environment, and uses often readily available data, such as geological maps, feature maps and topography, and thus does not require expensive and time-consuming aquifer tests.


Assuntos
Fenômenos Geológicos , Água Subterrânea , Recursos Hídricos , Análise de Variância , Sistemas de Informação Geográfica , Análise de Componente Principal , Abastecimento de Água , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...