Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 155(1): 131-139.e3, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28728784

RESUMO

OBJECTIVE: The study objective was to quantify the effect of ring type, ring-annulus sizing, suture position, and surgeon on the forces required to tie down and constrain a mitral annuloplasty ring to a beating heart. METHODS: Physio (Edwards Lifesciences, Irvine, Calif) or Profile 3D (Medtronic, Dublin, Ireland) annuloplasty rings were instrumented with suture force transducers and implanted in ovine subjects (N = 23). Tie-down forces and cyclic contractile forces were recorded and analyzed at 10 suture positions and at 3 levels of increasing peak left ventricular pressure. RESULTS: Across all conditions, tie-down force was 2.7 ± 1.4 N and cyclic contractile force was 2.0 ± 1.2 N. Tie-down force was not meaningfully affected by any factor except surgeon. Significant differences in overall and individual tie-down forces were observed between the 2 primary implanting surgeons. No other factors were observed to significantly affect tie-down force. Contractile suture forces were significantly reduced by ring-annulus true sizing. This was driven almost exclusively by Physio cases and by reduction along the anterior aspect, where dehiscence is less common clinically. Contractile suture forces did not differ significantly between ring types. However, when undersizing, Profile 3D forces were significantly more uniform around the annular circumference. A suture's tie-down force did not correlate to its eventual contractile force. CONCLUSIONS: Mitral annuloplasty suture loading is influenced by ring type, ring-annulus sizing, suture position, and surgeon, suggesting that reports of dehiscence may not be merely a series of isolated errors. When compared with forces known to cause suture dehiscence, these in vivo suture loading data aid in establishing potential targets for reducing the occurrence of ring dehiscence.


Assuntos
Anuloplastia da Valva Mitral , Insuficiência da Valva Mitral/cirurgia , Valva Mitral , Ajuste de Prótese , Técnicas de Sutura , Animais , Próteses Valvulares Cardíacas/efeitos adversos , Valva Mitral/patologia , Valva Mitral/cirurgia , Anuloplastia da Valva Mitral/efeitos adversos , Anuloplastia da Valva Mitral/instrumentação , Anuloplastia da Valva Mitral/métodos , Modelos Anatômicos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Desenho de Prótese/métodos , Ajuste de Prótese/efeitos adversos , Ajuste de Prótese/métodos , Ovinos
2.
J Biomech ; 66: 51-56, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29169632

RESUMO

Using in vitro models, the mechanics as well as surgical techniques for mitral valves (MV) and MV devices can be studied in a more controlled environment with minimal monetary investment and risk. However, these current models rely on certain simplifications, one being that the MV has a static, rigid annulus. In order to study more complex issues of imaging diagnostics and implanted device function, it would be more advantageous to verify their use for a dynamic environment in a dynamic simulator. This study provides the novel design and development of a dynamically contracting annulus (DCA) within an in vitro simulator, and its subsequent use to study MV biomechanics. Experiments were performed to study the ability of the DCA to reproduce the MV leaflet mechanics in vitro, as seen in vivo, as well as investigate how rigid annuloplasties affect MV leaflet mechanics. Experiments used healthy, excised MVs and normal hemodynamics; contractile waveforms were derived from human in vivo data. Stereophotogrammetry and echocardiography were used to measure anterior leaflet strain and the change in MV geometry. In pursuit of the first in vitro MV simulator that more completely represents the dynamic motion of the full valvular apparatus, this study demonstrated the successful operation of a dynamically contracting mitral annulus. It was seen that the diseased contractile state increased anterior leaflet strain compared to the healthy contractile state. In addition, it was also shown in vitro that simulated rigid annuloplasty increased mitral anterior leaflet strain compared to a healthy contraction.


Assuntos
Valva Mitral/cirurgia , Animais , Ecocardiografia , Humanos , Valva Mitral/fisiologia , Insuficiência da Valva Mitral/fisiopatologia , Fotogrametria , Ovinos , Suínos
3.
Med Image Anal ; 35: 238-249, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27475910

RESUMO

Intervention planning is essential for successful Mitral Valve (MV) repair procedures. Finite-element models (FEM) of the MV could be used to achieve this goal, but the translation to the clinical domain is challenging. Many input parameters for the FEM models, such as tissue properties, are not known. In addition, only simplified MV geometry models can be extracted from non-invasive modalities such as echocardiography imaging, lacking major anatomical details such as the complex chordae topology. A traditional approach for FEM computation is to use a simplified model (also known as parachute model) of the chordae topology, which connects the papillary muscle tips to the free-edges and select basal points. Building on the existing parachute model a new and comprehensive MV model was developed that utilizes a novel chordae representation capable of approximating regional connectivity. In addition, a fully automated personalization approach was developed for the chordae rest length, removing the need for tedious manual parameter selection. Based on the MV model extracted during mid-diastole (open MV) the MV geometric configuration at peak systole (closed MV) was computed according to the FEM model. In this work the focus was placed on validating MV closure computation. The method is evaluated on ten in vitro ovine cases, where in addition to echocardiography imaging, high-resolution µCT imaging is available for accurate validation.


Assuntos
Ecocardiografia Tridimensional/métodos , Valva Mitral/diagnóstico por imagem , Incerteza , Algoritmos , Animais , Análise de Elementos Finitos , Humanos , Insuficiência da Valva Mitral/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos
4.
Ann Biomed Eng ; 45(2): 496-507, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27699507

RESUMO

Computational modeling of the mitral valve (MV) has potential applications for determining optimal MV repair techniques and risk of recurrent mitral regurgitation. Two key concerns for informing these models are (1) sensitivity of model performance to the accuracy of the input geometry, and, (2) acquisition of comprehensive data sets against which the simulation can be validated across clinically relevant geometries. Addressing the first concern, ex vivo micro-computed tomography (microCT) was used to image MVs at high resolution (~40 micron voxel size). Because MVs distorted substantially during static imaging, glutaraldehyde fixation was used prior to microCT. After fixation, MV leaflet distortions were significantly smaller (p < 0.005), and detail of the chordal tree was appreciably greater. Addressing the second concern, a left heart simulator was designed to reproduce MV geometric perturbations seen in vivo in functional mitral regurgitation and after subsequent repair, and maintain compatibility with microCT. By permuting individual excised ovine MVs (n = 5) through each state (healthy, diseased and repaired), and imaging with microCT in each state, a comprehensive data set was produced. Using this data set, work is ongoing to construct and validate high-fidelity MV biomechanical models. These models will seek to link MV function across clinically relevant states.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Modelos Cardiovasculares , Microtomografia por Raio-X , Animais , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/fisiopatologia , Ovinos
5.
Ann Biomed Eng ; 44(7): 2273-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26553575

RESUMO

Increasing availability of micro-computed tomography (µCT) as a structural imaging gold-standard is bringing unprecedented geometric detail to soft tissue modeling. However, the utility of these advances is severely hindered without analogous enhancement to the associated kinematic detail. To this end, labeling and following discrete points on a tissue across various deformation states is a well-established approach. Still, existing techniques suffer limitations when applied to complex geometries and large deformations and strains. Therefore, we herein developed a non-destructive system for applying fiducial markers (minimum diameter: 500 µm) to soft tissue and tracking them through multiple loading conditions by µCT. Using a novel applicator to minimize adhesive usage, four distinct marker materials were resolvable from both tissue and one another, without image artifacts. No impact on tissue stiffness was observed. µCT addressed accuracy limitations of stereophotogrammetry (inter-method positional error 1.2 ± 0.3 mm, given marker diameter 1.9 ± 0.1 mm). Marker application to ovine mitral valves revealed leaflet Almansi areal strains (45 ± 4%) closely matching literature values, and provided radiographic access to previously inaccessible regions, such as the leaflet coaptation zone. This system may meaningfully support mechanical characterization of numerous tissues or biomaterials, as well as tissue-device interaction studies for regulatory standards purposes.


Assuntos
Valva Mitral/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...