Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38610428

RESUMO

NASA's Soil Moisture Active Passive (SMAP) was originally designed to combine high-resolution active (radar) and coarse-resolution but highly sensitive passive (radiometer) L-band observations to achieve unprecedented spatial resolution and accuracy for soil moisture retrievals. However, shortly after SMAP was put into orbit, the radar component failed, and the high-resolution capability was lost. In this paper, the integration of an alternative radar sensor with the SMAP radiometer is proposed to enhance soil moisture retrieval capabilities over vegetated areas in the absence of the original high-resolution radar in the SMAP mission. ESA's Sentinel-1A C-band radar was used in this study to enhance the spatial resolution of the SMAP L-band radiometer and to improve soil moisture retrieval accuracy. To achieve this purpose, we downscaled the 9 km radiometer data of the SMAP to 1 km utilizing the Smoothing Filter-based Intensity Modulation (SFIM) method. An Artificial Neural Network (ANN) was then trained to exploit the synergy between the Sentinel-1A radar, SMAP radiometer, and the in situ-measured soil moisture. An analysis of the data obtained for a plant growing season over the Mississippi Delta showed that the VH-polarized Sentinel-1A radar data can yield a coefficient of correlation of 0.81 and serve as a complimentary source to the SMAP radiometer for more accurate and enhanced soil moisture prediction over agricultural fields.

2.
Sensors (Basel) ; 23(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37514722

RESUMO

The importance of high-resolution and continuous hydrologic data for monitoring and predicting water levels is crucial for sustainable water management. Monitoring Total Water Storage (TWS) over large areas by using satellite images such as Gravity Recovery and Climate Experiment (GRACE) data with coarse resolution (1°) is acceptable. However, using coarse satellite images for monitoring TWS and changes over a small area is challenging. In this study, we used the Random Forest model (RFM) to spatially downscale the GRACE mascon image of April 2020 from 0.5° to ~5 km. We initially used eight different physical and hydrological parameters in the model and finally used the four most significant of them for the final output. We executed the RFM for Mississippi Alluvial Plain. The validating data R2 for each model was 0.88. Large R2 and small RMSE and MAE are indicative of a good fit and accurate predictions by RFM. The result of this research aligns with the reported water depletion in the central Mississippi Delta area. Therefore, by using the Random Forest model and appropriate parameters as input of the model, we can downscale the GRACE mascon image to provide a more beneficial result that can be used for activities such as groundwater management at a sub-county-level scale in the Mississippi Delta.

3.
Sensors (Basel) ; 7(12): 3416-3427, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28903302

RESUMO

Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km² Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA's Tropical Rainfall Measuring Mission (TRMM) Multi-satellitePrecipitation Analysis (TMPA) product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...