Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 200(1): 165-182, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38574381

RESUMO

Like many per- or polyfluorinated alkyl substances (PFAS), toxicity studies with HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), a short-chain PFAS used in the manufacture of some types of fluorinated polymers, indicate that the liver is the primary target of toxicity in rodents following oral exposure. Although the current weight of evidence supports the PPARα mode of action (MOA) for liver effects in HFPO-DA-exposed mice, alternate MOAs have also been hypothesized including PPARγ or cytotoxicity. To further evaluate the MOA for HFPO-DA in rodent liver, transcriptomic analyses were conducted on samples from primary mouse, rat, and pooled human hepatocytes treated for 12, 24, or 72 h with various concentrations of HFPO-DA, or agonists of PPARα (GW7647), PPARγ (rosiglitazone), or cytotoxic agents (ie, acetaminophen or d-galactosamine). Concordance analyses of enriched pathways across chemicals within each species demonstrated the greatest concordance between HFPO-DA and PPARα agonist GW7647-treated hepatocytes compared with the other chemicals evaluated. These findings were supported by benchmark concentration modeling and predicted upstream regulator results. In addition, transcriptomic analyses across species demonstrated a greater transcriptomic response in rodent hepatocytes treated with HFPO-DA or agonists of PPARα or PPARγ, indicating rodent hepatocytes are more sensitive to HFPO-DA or PPARα/γ agonist treatment. These results are consistent with previously published transcriptomic analyses and further support that liver effects in HFPO-DA-exposed rodents are mediated through rodent-specific PPARα signaling mechanisms as part of the MOA for PPARα activator-induced rodent hepatocarcinogenesis. Thus, effects observed in mouse liver are not appropriate endpoints for toxicity value development for HFPO-DA in human health risk assessment.


Assuntos
Hepatócitos , PPAR alfa , PPAR gama , Transcriptoma , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Humanos , PPAR gama/genética , PPAR gama/agonistas , PPAR gama/metabolismo , Transcriptoma/efeitos dos fármacos , Masculino , Camundongos , Fluorocarbonos/toxicidade , Ratos , Propionatos/toxicidade , Células Cultivadas , Perfilação da Expressão Gênica , Rosiglitazona/farmacologia , Rosiglitazona/toxicidade , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Relação Dose-Resposta a Droga , Butiratos , Compostos de Fenilureia
2.
Toxicol Sci ; 200(1): 183-198, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38574385

RESUMO

Recent in vitro transcriptomic analyses for the short-chain polyfluoroalkyl substance, HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), support conclusions from in vivo data that HFPO-DA-mediated liver effects in mice are part of the early key events of the peroxisome proliferator-activated receptor alpha (PPARα) activator-induced rodent hepatocarcinogenesis mode of action (MOA). Transcriptomic responses in HFPO-DA-treated rodent hepatocytes have high concordance with those treated with a PPARα agonist and lack concordance with those treated with PPARγ agonists or cytotoxic agents. To elucidate whether HFPO-DA-mediated transcriptomic responses in mouse liver are PPARα-dependent, additional transcriptomic analyses were conducted on samples from primary PPARα knockout (KO) and wild-type (WT) mouse hepatocytes exposed for 12, 24, or 72 h with various concentrations of HFPO-DA, or well-established agonists of PPARα (GW7647) and PPARγ (rosiglitazone), or cytotoxic agents (acetaminophen or d-galactosamine). Pathway and predicted upstream regulator-level responses were highly concordant between HFPO-DA and GW7647 in WT hepatocytes. A similar pattern was observed in PPARα KO hepatocytes, albeit with a distinct temporal and concentration-dependent delay potentially mediated by compensatory responses. This delay was not observed in PPARα KO hepatocytes exposed to rosiglitazone, acetaminophen, d-galactosamine. The similarity in transcriptomic signaling between HFPO-DA and GW7647 in both the presence and absence of PPARα in vitro indicates these compounds share a common MOA.


Assuntos
Hepatócitos , Camundongos Knockout , PPAR alfa , PPAR gama , Transcriptoma , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Transcriptoma/efeitos dos fármacos , Camundongos , Fluorocarbonos/toxicidade , Propionatos/farmacologia , Propionatos/toxicidade , Camundongos Endogâmicos C57BL , Masculino , Células Cultivadas , Perfilação da Expressão Gênica , Acetaminofen/toxicidade , Citotoxinas/toxicidade , Butiratos , Compostos de Fenilureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...