Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Model Earth Syst ; 13(4): e2020MS002346, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34221239

RESUMO

An advanced aerosol treatment, with a focus on semivolatile nitrate formation, is introduced into the Community Atmosphere Model version 5 with interactive chemistry (CAM5-chem) by coupling the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) with the 7-mode Modal Aerosol Module (MAM7). An important feature of MOSAIC is dynamic partitioning of all condensable gases to the different fine and coarse mode aerosols, as governed by mode-resolved thermodynamics and heterogeneous chemical reactions. Applied in the free-running mode from 1995 to 2005 with prescribed historical climatological conditions, the model simulates global distributions of sulfate, nitrate, and ammonium in good agreement with observations and previous studies. Inclusion of nitrate resulted in ∼10% higher global average accumulation mode number concentrations, indicating enhanced growth of Aitken mode aerosols from nitrate formation. While the simulated accumulation mode nitrate burdens are high over the anthropogenic source regions, the sea-salt and dust modes respectively constitute about 74% and 17% of the annual global average nitrate burden. Regional clear-sky shortwave radiative cooling of up to -5 W m-2 due to nitrate is seen, with a much smaller global average cooling of -0.05 W m-2. Significant enhancements in regional cloud condensation nuclei (at 0.1% supersaturation) and cloud droplet number concentrations are also attributed to nitrate, causing an additional global average shortwave cooling of -0.8 W m-2. Taking into consideration of changes in both longwave and shortwave radiation under all-sky conditions, the net change in the top of the atmosphere radiative fluxes induced by including nitrate aerosol is -0.7 W m-2.

2.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

3.
J Adv Model Earth Syst ; 10(10): 2514-2526, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31031881

RESUMO

The direct radiative forcing of black carbon aerosol (BC) on the Earth system remains unsettled, largely due to the uncertainty with physical properties of BC throughout their lifecycle. Here we show that ambient chamber measurements of BC properties provide a novel constraint on the crude BC aging representation in climate models. Observational evidence for significant absorption enhancement of BC can be reproduced when the aging processes in the four-mode version of the Modal Aerosol Module (MAM4) aerosol scheme in the Community Atmosphere Model version 5 are calibrated by the recent in situ chamber measurements. An observation-based scaling method is developed in the aging timescale calculation to alleviate the influence of biases in the simulated model chemical composition. Model sensitivity simulations suggest that the different monolayer settings in the BC aging parameterization of MAM4 can cause as large as 26% and 24% differences in BC burden and radiative forcing, respectively. We also find that an increase in coating materials (e.g., sulfate and secondary organic aerosols) reduces BC lifetime by increasing the hygroscopicity of the mixture but enhances its absorption, resulting in a net increase in BC direct radiative forcing. Our results suggest that accurate simulations of BC aging processes as well as other aerosol species are equally important in reducing the uncertainty of BC forcing estimation.

4.
Environ Sci Technol ; 52(3): 1191-1199, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29244949

RESUMO

Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.


Assuntos
Compostos Orgânicos , Aerossóis , Difusão , Cinética , Viscosidade
5.
Proc Natl Acad Sci U S A ; 114(6): 1246-1251, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115713

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks.


Assuntos
Atmosfera/química , Benzo(a)pireno/química , Carcinógenos/química , Neoplasias Pulmonares/induzido quimicamente , Modelos Químicos , Aerossóis , Benzo(a)pireno/efeitos adversos , Clima , Humanos , Oxirredução , Medição de Risco
6.
J Strength Cond Res ; 30(11): 3242-3248, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26950355

RESUMO

Davis, MR, Easter, RL, Carlock, JM, Weiss, LW, Longo, EA, Smith, LM, Dawes, JJ, and Schilling, BK. Self-reported physical tasks and exercise training in Special Weapons and Tactics (SWAT) teams. J Strength Cond Res 30(11): 3242-3248, 2016-Little research has been done examining the most physically demanding tasks a SWAT officer may perform in the line of duty. Our objective was to analyze the rankings of tasks by SWAT officers based on frequency, difficulty, and importance and assess if training is addressing traits needed for successful task completion. A survey was designed using Qualtrics (Qualtrics Labs Inc). The survey had a demographics section, performance section, and training section. Officers were contacted by phone or e-mail and asked about interest in participating. Officers who agreed were sent the survey. Our results found a strong correlation between frequency of task and importance (r = 0.69, p = 0.001), and a moderate correlation was found between task difficulty and importance (r = 0.37, p = 0.005). Task rankings were averaged across the 3 domains to assess "overall" importance, and the top 3 tasks were assessed for necessary traits for successful performance. Power and strength were determined to be the most important traits for successful performance. Officers ranked the top 2 focuses of their training program in the training section as stamina/muscular endurance and cardiovascular/respiratory endurance. Training programs for SWAT officers should be developed to improve performance of the tasks with the highest "overall" importance. Therefore, a training program should emphasize strength and power improvements while not neglecting other measures of fitness.


Assuntos
Militares , Avaliação das Necessidades , Condicionamento Físico Humano , Adulto , Humanos , Força Muscular , Resistência Física , Autorrelato , Estados Unidos
7.
J Geophys Res Atmos ; 121(12): 7254-7283, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32818126

RESUMO

The ability of 11 models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model intercomparison initiative (AeroCom II), is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded data set of aerosol extinction profiles built for this purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 subcontinental regions show that five models improved, whereas three degraded in reproducing the interregional variability in Z α0-6 km, the mean extinction height diagnostic, as computed from the CALIOP aerosol profiles over the 0-6 km altitude range for each studied region and season. While the models' performance remains highly variable, the simulation of the timing of the Z α0-6 km peak season has also improved for all but two models from AeroCom Phase I to Phase II. The biases in Z α0-6 km are smaller in all regions except Central Atlantic, East Asia, and North and South Africa. Most of the models now underestimate Z α0-6 km over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Z α0-6 km latitudinal variability over ocean than over land. Hypotheses for the performance and evolution of the individual models and for the intermodel diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties contributing to the differences between the simulations and observations.

8.
Anal Chem ; 82(19): 7943-51, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20718425

RESUMO

The aerosol indirect effect remains the most uncertain aspect of climate change modeling, calling for characterization of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of our single particle mass spectrometer (SPLAT II) operated in dual data acquisition mode to simultaneously measure particle number concentrations, density, asphericity, and individual particle size and quantitative composition, with temporal resolution better than 60 s, thus yielding all the required properties to definitively characterize the aerosol-cloud interaction in this exemplary case. We find that particles are composed of oxygenated organics, many mixed with sulfates, biomass burning particles, some with sulfates, and processed sea-salt. Cloud residuals are found to contain more sulfates than background particles, explaining their higher efficiency to serve as cloud condensation nuclei (CCN). Additionally, CCN sulfate content increased with time due to in-cloud droplet processing. A comparison between the size distributions of background, CCN, and interstitial particles shows that while nearly all CCN particles are larger than 100 nm, over 80% of interstitial particles are smaller than 100 nm. We conclude that for this cloud, particle size is the controlling factor on aerosol activation into cloud-droplets, with higher sulfate content playing a secondary role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...