Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 183(12): 3689-703, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11371533

RESUMO

Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains.


Assuntos
Arthrobacter/enzimologia , Benzoatos/metabolismo , Genes Bacterianos , Ácidos Ftálicos/metabolismo , Sequência de Aminoácidos , Arthrobacter/metabolismo , Biodegradação Ambiental , Carboxiliases/genética , Carboxiliases/metabolismo , Clonagem Molecular , Hidroxibenzoatos/metabolismo , Dados de Sequência Molecular , Óperon , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Plasmídeos , Sequências Reguladoras de Ácido Nucleico , Mapeamento por Restrição , Análise de Sequência de DNA
2.
Appl Environ Microbiol ; 66(6): 2668-72, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10831455

RESUMO

The hydratase-aldolase-catalyzed conversion of trans-o-hydroxybenzylidenepyruvate to salicylaldehyde and pyruvate is an intermediate reaction in the conversion of naphthalene to salicylate by bacteria. Here, a variety of aromatic aldehydes and some nonaromatic aldehydes together with pyruvate have been shown to be substrates for aldol condensations catalyzed by this enzyme in extracts of the recombinant strain Escherichia coli JM109(pRE701). Some of the products of these reactions were also compared as substrates in the opposite (hydration-aldol cleavage) reaction.


Assuntos
Aldeídos/metabolismo , Escherichia coli/genética , Hidroliases/metabolismo , Piruvatos/metabolismo , Aldeídos/química , Catálise , Escherichia coli/enzimologia , Cromatografia Gasosa-Espectrometria de Massas , Hidroliases/genética , Naftalenos/metabolismo , Piruvatos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo
3.
Biodegradation ; 9(2): 119-32, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9821257

RESUMO

Pseudomonas putida RE204 employs a set of plasmid-specified enzymes in the catabolism of isopropylbenzene (cumene) and related alkylbenzenes. A 21,768 bp segment of the plasmid pRE4, whose sequence is discussed here, includes the ipb (isopropylbenzene catabolic) operon as well as associated genetic elements. The ipb operon, ipbAaAbAcAdBCEGFHD, encodes enzymes catalyzing the conversion of isopropylbenzene to isobutyrate, pyruvate, and acetyl-coenzyme A as well as an outer membrane protein (IpbH) of uncertain function. These gene products are 75 to 91% identical to those encoded by other isopropylbenzene catabolic operons and are somewhat less similar to analogous proteins of related pathways for the catabolism of mono-substituted benzenes. Upstream of ipbAa, ipbR encodes a positive regulatory protein which has about 56% identity to XylS regulatory proteins of TOL (xylene/toluate) catabolic plasmids. This similarity and that of the DNA sequence in the proposed ipb operator-promoter region (ipbOP) to the same region of the xyl meta operon (xylOmPm) suggest that, although the IpbR and XylS regulatory proteins recognize very different inducers, their interactions with DNA to activate gene expression are similar. Upstream of ipbR is an 1196 bp insertion sequence, IS1543, related to IS52 and IS1406. Separating ipbR from ipbAa are 3 additional tightly clustered IS elements. These are IS1544, related to IS1543, IS52, and other members of the IS5 family; IS1545, related to IS1240; and IS1546, related to IS1491. Encompassing the ipb catabolic genes and the other genetic elements and separated from each other by 18,492 bp, are two identical, directly repeated 1007 bp DNA segments. Homologous recombination between these segments appears to be responsible for the occasional deletion of the intervening DNA from pRE4.


Assuntos
Derivados de Benzeno/metabolismo , DNA Bacteriano/genética , Dioxigenases , Óperon/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biodegradação Ambiental , Domínio Catalítico , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Dados de Sequência Molecular , Oxigenases/metabolismo , Plasmídeos
4.
J Bacteriol ; 179(10): 3171-80, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9150211

RESUMO

Pseudomonas putida F1 utilizes p-cymene (p-isopropyltoluene) by an 11-step pathway through p-cumate (p-isopropylbenzoate) to isobutyrate, pyruvate, and acetyl coenzyme A. The cym operon, encoding the conversion of p-cymene to p-cumate, is located just upstream of the cmt operon, which encodes the further catabolism of p-cumate and is located, in turn, upstream of the tod (toluene catabolism) operon in P. putida F1. The sequences of an 11,236-bp DNA segment carrying the cym operon and a 915-bp DNA segment completing the sequence of the 2,673-bp DNA segment separating the cmt and tod operons have been determined and are discussed here. The cym operon contains six genes in the order cymBCAaAbDE. The gene products have been identified both by functional assays and by comparing deduced amino acid sequences to published sequences. Thus, cymAa and cymAb encode the two components of p-cymene monooxygenase, a hydroxylase and a reductase, respectively; cymB encodes p-cumic alcohol dehydrogenase; cymC encodes p-cumic aldehyde dehydrogenase; cymD encodes a putative outer membrane protein related to gene products of other aromatic hydrocarbon catabolic operons, but having an unknown function in p-cymene catabolism; and cymE encodes an acetyl coenzyme A synthetase whose role in this pathway is also unknown. Upstream of the cym operon is a regulatory gene, cymR. By using recombinant bacteria carrying either the operator-promoter region of the cym operon or the cmt operon upstream of genes encoding readily assayed enzymes, in the presence or absence of cymR, it was demonstrated that cymR encodes a repressor which controls expression of both the cym and cmt operons and is inducible by p-cumate but not p-cymene. Short (less than 350 bp) homologous DNA segments that are located upstream of cymR and between the cmt and tod operons may have been involved in recombination events that led to the current arrangement of cym, cmt, and tod genes in P. putida F1.


Assuntos
Benzoatos/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Monoterpenos , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Terpenos/metabolismo , Acetato-CoA Ligase/metabolismo , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Biotransformação/genética , Clonagem Molecular , Cimenos , DNA Bacteriano/metabolismo , Enoil-CoA Hidratase/genética , Genes Bacterianos , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Óperon , Oxirredutases/metabolismo , Oxo-Ácido-Liases/genética , Pseudomonas putida/enzimologia , Sequências Repetitivas de Ácido Nucleico , Tolueno/metabolismo
5.
J Bacteriol ; 179(1): 115-21, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8981987

RESUMO

Burkholderia strain (JT 1500), able to use 2-naphthoate as the sole source of carbon, was isolated from soil. On the basis of growth characteristics, oxygen uptake experiments, enzyme assays, and detection of intermediates, a degradation pathway of 2-naphthoate is proposed. The features of this pathway are convergent with those for phenanthrene. We propose a pathway for the conversion of 2-naphthoate to 1 mol (each) of pyruvate, succinate, and acetyl coenzyme A and 2 mol of CO2. During growth in the presence of 2-naphthoate, six metabolites were detected by thin-layer chromatography, high-performance liquid chromatography, and spectroscopy. 1-Hydroxy-2-naphthoate accumulated in the culture broth during growth on 2-naphthoate. Also, the formation of 2'-carboxybenzalpyruvate, phthalaldehydate, phthalate, protocatechuate, and beta-carboxy-cis,cis-muconic acid was demonstrated. (1R,2S)-cis-1,2-Dihydro-1,2-dihydroxy-2-naphthoate was thus considered an intermediate between 2-naphthoate and 1-hydroxy-2-naphthoate, but it was not transformed by whole cells or their extracts. We conclude that this diol is not responsible for the formation of 1-hydroxy-2-naphthoate from 2-naphthoate but that one of the other three diastereomers is not eliminated as a potential intermediate for a dehydration reaction.


Assuntos
Burkholderia/metabolismo , Modelos Químicos , Naftalenos/metabolismo , Biodegradação Ambiental , Burkholderia/enzimologia , Carbono/metabolismo , Consumo de Oxigênio
6.
Appl Environ Microbiol ; 62(3): 756-60, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16535266

RESUMO

The biotransformation of 6,6-dimethylfulvene [5-(1-methylethylidene)-1,3-cyclopentadiene], a nonaromatic C(inf5) carbocyclic analog of isopropylbenzene, was examined by using Pseudomonas putida RE213, a Tn5-generated dihydrodiol-accumulating mutant of the isopropylbenzene-degrading strain P. putida RE204. 6,6-Dimethylfulvene was converted to a single chiral product identified as (+)-(1R,2S)-cis-1,2-dihydroxy-5-(1-methylethylidene)-3-cyclopentene. This isopropylbenzene 2,3-dioxygenase-catalyzed transformation demonstrates the potential of bacterial arene dioxygenases for the direct conversion of cyclopentadienylidene compounds to homochiral C(inf5) carbocyclic cis-diols for use in enantiocontrolled organic syntheses.

7.
Appl Environ Microbiol ; 62(3): 778-83, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16535269

RESUMO

A DNA segment involved in the regulation of the isopropylbenzene (cumene) catabolism operon (ipb) of plasmid pRE4 from Pseudomonas putida RE204 and the Vibrio fischeri luciferase genes, luxCDABE, were used to create an ipbRo/pA(prm1)-luxCDABE reporter fusion plasmid, pOS25. Escherichia coli HMS174(pOS25) produces light in the presence of inducers of the ipb operon. These inducers were shown to be hydrophobic compounds and to include monoalkylbenzenes, substituted benzenes and toluenes, some alkanes and cycloalkanes, chlorinated solvents, and naphthalenes. Complex hydrocarbon mixtures, such as gasoline, diesel fuel, jet fuels (JP-4 and JP-5), and creosote, were also inducers of ipb-lux. Bacteria carrying the ipb-lux reporter may be useful as bioindicators of hydrocarbon pollution in the environment and may be particularly valuable for examining the bioavailability of inducing pollutants.

8.
J Bacteriol ; 178(5): 1351-62, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8631713

RESUMO

Pseudomonas putida F1 utilizes p-cumate (p-isopropylbenzoate) as a growth substrate by means of an eight-step catabolic pathway. A 35.75-kb DNA segment, within which the cmt operon encoding the catabolism of p-cumate is located, was cloned as four separate overlapping restriction fragments and mapped with restriction endonucleases. By examining enzyme activities in recombinant bacteria carrying these fragments and sub-cloned fragments, genes encoding most of the enzymes of the p-cumate pathway were located. Subsequent sequence analysis of 11,260 bp gave precise locations of the 12 genes of the cmt operon. The first three genes, cmtAaAbAc, and the sixth gene, cmtAd, encode the components of p-cumate 2,3-dioxygenase (ferredoxin reductase, large subunit of the terminal dioxygenase, small subunit of the terminal dioxygenase, and ferredoxin, respectively); these genes are separated by cmtC, which encodes 2,3-dihydroxy-p-cumate 3,4-dioxygenase, and cmtB, coding for 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase. The ring cleavage product, 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate, is acted on by a decarboxylase encoded by the seventh gene, cmtD, which is followed by a large open reading frame, cmtI, of unknown function. The next four genes, cmtEFHG, encode 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate hydrolase, 2-hydroxypenta-2,4-dienoate hydratase, 4-hydroxy-2-oxovalerate aldolase, and acetaldehyde dehydrogenase, respectively, which transform the decarboxylation product to amphibolic intermediates. The deduced amino acid sequences of all the cmt gene products except CmtD and CmtI have a recognizable but low level of identity with amino acid sequences of enzymes catalyzing analogous reactions in other catabolic pathways. This identity is highest for the last two enzymes of the pathway (4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase [acylating]), which have identities of 66 to 77% with the corresponding enzymes from other aromatic meta-cleavage pathways. Recombinant bacteria carrying certain restriction fragments bordering the cmt operon were found to transform indole to indigo. This reaction, known to be catalyzed by toluene 2,3-dioxygenase, led to the discovery that the tod operon, encoding the catabolism of toluene, is located 2.8 kb downstream from and in the same orientation as the cmt operon in P. putida F1.


Assuntos
Benzoatos/metabolismo , DNA Bacteriano/genética , Dioxigenases , Genes Bacterianos , Óperon , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Pseudomonas putida/genética , Aldeído Oxirredutases/genética , Sequência de Aminoácidos , Sequência de Bases , Carboxiliases/genética , Clonagem Molecular , Hidroliases/genética , Dados de Sequência Molecular , Oxirredutases/genética , Oxo-Ácido-Liases/genética , Oxigenases/genética , Plasmídeos , Pseudomonas putida/enzimologia , Pseudomonas putida/metabolismo , Mapeamento por Restrição
9.
Appl Environ Microbiol ; 62(2): 507-14, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16535238

RESUMO

Oxidation of acenaphthene, acenaphthylene, and fluorene was examined with recombinant strain Pseudomonas aeruginosa PAO1(pRE695) expressing naphthalene dioxygenase genes cloned from plasmid NAH7. Acenaphthene underwent monooxygenation to 1-acenaphthenol with subsequent conversion to 1-acenaphthenone and cis- and trans-acenaphthene-1,2-diols, while acenaphthylene was dioxygenated to give cis-acenaphthene-1,2-diol. Nonspecific dehydrogenase activities present in the host strain led to the conversion of both of the acenaphthene-1,2-diols to 1,2-acenaphthoquinone. The latter was oxidized spontaneously to naphthalene-1,8-dicarboxylic acid. No aromatic ring dioxygenation products were detected from acenaphthene and acenaphthylene. Mixed monooxygenase and dioxygenase actions of naphthalene dioxygenase on fluorene yielded products of benzylic 9-monooxygenation, aromatic ring dioxygenation, or both. The action of naphthalene dioxygenase on a variety of methyl-substituted aromatic compounds, including 1,2,4-trimethylbenzene and isomers of dimethylnaphthalene, resulted in the formation of benzylic alcohols, i.e., methyl group monooxygenation products, which were subsequently converted to the corresponding carboxylic acids by dehydrogenase(s) in the host strain. Benzylic monooxygenation of methyl groups was strongly predominant over aromatic ring dioxygenation and essentially nonspecific with respect to the substitution pattern of the aromatic substrates. In addition to monooxygenating benzylic methyl and methylene groups, naphthalene dioxygenase behaved as a sulfoxygenase, catalyzing monooxygenation of the sulfur heteroatom of 3-methylbenzothiophene.

10.
J Bacteriol ; 177(23): 6983-8, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7592495

RESUMO

The p-cumate-degrading strain Pseudomonas putida F1 and the m- and p-toluate-degrading strain P. putida mt-2 transform indole-2-carboxylate and indole-3-carboxylate to colored products identified here as indigo, indirubin, and isatin. A mechanism by which these products could be formed spontaneously following dioxygenase-catalyzed dihydroxylation of the indolecarboxylates is proposed. Indolecarboxylates were employed as chromogenic substrates for identifying recombinant bacteria carrying genes encoding p-cumate dioxygenase and toluate dioxygenase. Dioxygenase gene-carrying bacteria could be readily distinguished as dark green-blue colonies among other colorless recombinant Escherichia coli colonies on selective agar plates containing either indole-2-carboxylate or indole-3-carboxylate.


Assuntos
Aminoácidos/metabolismo , Compostos Cromogênicos/metabolismo , Clonagem Molecular/métodos , Oxigenases/genética , Pseudomonas putida/genética , Ácidos Carboxílicos , Corantes/metabolismo , Índigo Carmim , Indóis/metabolismo , Isatina/metabolismo , Pseudomonas putida/metabolismo
11.
J Bacteriol ; 176(24): 7757-62, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8002605

RESUMO

The sequence of a 2,437-bp DNA segment from the naphthalene upper catabolic pathway operon of plasmid NAH7 was determined. This segment contains three large open reading frames designated nahQ', nahE, and nahD. The first of these is the 3' end of an open reading frame that has no known function, the second (993 bp) encodes trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (deduced molecular weight, 36,640), and the third (609 bp) encodes 2-hydroxychromene-2-carboxylate isomerase (deduced molecular weight, 23,031). This DNA has a high degree of sequence homology (greater than 91% for the first 2161 bp) with a DNA segment from the dox (dibenzothiophene oxidation) operon of Pseudomonas sp. strain C18, which encodes a pathway analogous to that encoded by NAH7. However, 84 bp downstream from nahD, the last gene in the nah operon, this homology ends. This 84-bp sequence at the downstream end of nah and dox homology has 76% homology to a sequence that occurs just upstream of the nah promoter in NAH7. These directly repeated 84-bp sequences thus encompass the upper-pathway nah operon and constitute the ends of a highly conserved region.


Assuntos
Hidroliases/genética , Oxirredutases Intramoleculares , Isomerases/genética , Naftalenos/metabolismo , Plasmídeos/genética , Pseudomonas putida/genética , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Pseudomonas putida/enzimologia , Salicilatos/metabolismo , Ácido Salicílico , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
12.
J Bacteriol ; 176(13): 3992-4002, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8021182

RESUMO

Isopropylbenzene-degrading bacteria, including Pseudomonas putida RE204, transform benzothiophene to a mixture of compounds. Induced strain RE204 and a number of its Tn5 mutant derivatives were used to accumulate these compounds and their precursors from benzothiophene. These metabolites were subsequently identified by 1H and 13C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. When strain RE204 was incubated with benzothiophene, it produced a bright yellow compound, identified as trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate, formed by the rearrangement of cis-4-(3-keto-2,3-dihydrothienyl)-2-hydroxybuta-2,4-dieno ate, the product of 3-isopropylcatechol-2,3-dioxygenase-catalyzed ring cleavage of 4,5-dihydroxybenzothiophene, as well as 2-mercaptophenylglyoxalate and 2'-mercaptomandelaldehyde. A dihydrodiol dehydrogenase-deficient mutant, strain RE213, converted benzothiophene to cis-4,5-dihydroxy-4,5-dihydrobenzothiophene and 2'-mercaptomandelaldehyde; neither trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate nor 2-mercaptophenylglyoxalate was detected. Cell extracts of strain RE204 catalyzed the conversion of cis-4,5-dihydroxy-4,5-dihydrobenzothiophene to trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate in the presence of NAD+. Under the same conditions, extracts of the 3-isopropylcatechol-2,3-dioxygenase-deficient mutant RE215 acted on cis-4,5-dihydroxy-4,5-dihydrobenzothiophene, forming 4,5-dihydroxybenzothiophene. These data indicate that oxidation of benzothiophene by strain RE204 is initiated at either ring. Transformation initiated at the 4,5 position on the benzene ring proceeds by three enzyme-catalyzed reactions through ring cleavage. The sequence of events that occurs following attack at the 2,3 position of the thiophene ring is less clear, but it is proposed that 2,3 dioxygenation yields a product that is both a cis-dihydrodiol and a thiohemiacetal, which as a result of this structure undergoes two competing reactions: either spontaneous opening of the ring, yielding 2'-mercaptomandelaldehyde, or oxidation by the dihydrodiol dehydrogenase to another thiohemiacetal, 2-hydroxy-3-oxo-2,3-dihydrobenzothiophene, which is not a substrate for the ring cleavage dioxygenase but which spontaneously opens to form 2-mercaptophenylglyoxaldehyde and subsequently 2-mercaptophenylglyoxalate. The yellow product, trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate, is a structural analog of trans-o-hydroxybenzylidenepyruvate, an intermediate of the naphthalene catabolic pathway; extracts of recombinant bacteria containing trans-o-hydroxybenzylidenepyruvate hydratase-aldolase catalyzed the conversion of trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate to 3-hydroxythiophene-2-carboxaldehyde, which could then be further acted on, in the presence of NAD+, by extracts of recombinant bacteria containing the subsequent enzyme of the naphthalene pathway, salicylaldehyde dehydrogenase.


Assuntos
Derivados de Benzeno/metabolismo , Pseudomonas putida/metabolismo , Tiofenos/metabolismo , Aldeído Oxirredutases/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Hidroliases/metabolismo
13.
J Bacteriol ; 174(23): 7542-54, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1447127

RESUMO

The reactions involved in the bacterial metabolism of naphthalene to salicylate have been reinvestigated by using recombinant bacteria carrying genes cloned from plasmid NAH7. When intact cells of Pseudomonas aeruginosa PAO1 carrying DNA fragments encoding the first three enzymes of the pathway were incubated with naphthalene, they formed products of the dioxygenase-catalyzed ring cleavage of 1,2-dihydroxynaphthalene. These products were separated by chromatography on Sephadex G-25 and were identified by 1H and 13C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry as 2-hydroxychromene-2-carboxylate (HCCA) and trans-o-hydroxybenzylidenepyruvate (tHBPA). HCCA was detected as the first reaction product in these incubation mixtures by its characteristic UV spectrum, which slowly changed to a spectrum indicative of an equilibrium mixture of HCCA and tHBPA. Isomerization of either purified product occurred slowly and spontaneously to give an equilibrium mixture of essentially the same composition. tHBPA is also formed from HCCA by the action of an isomerase enzyme encoded by plasmid NAH7. The gene encoding this enzyme, nahD, was cloned on a 1.95-kb KpnI-BglII fragment. Extracts of Escherichia coli JM109 carrying this fragment catalyzed the rapid equilibration of HCCA and tHBPA. Metabolism of tHBPA to salicylaldehyde by hydration and aldol cleavage is catalyzed by a single enzyme encoded by a 1-kb MluI-StuI restriction fragment. A mechanism for the hydratase-aldolase-catalyzed reaction is proposed. The salicylaldehyde dehydrogenase gene, nahF, was cloned on a 2.75-kb BamHI fragment which also carries the naphthalene dihydrodiol dehydrogenase gene, nahB. On the basis of the identification of the enzymes encoded by various clones, the gene order for the nah operon was shown to be p, A, B, F, C, E, D.


Assuntos
Oxirredutases Intramoleculares , Naftalenos/metabolismo , Naftóis/metabolismo , Plasmídeos/genética , Pseudomonas aeruginosa/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Biodegradação Ambiental , Clonagem Molecular , DNA Recombinante , Escherichia coli/genética , Deleção de Genes , Hidroliases/genética , Hidroliases/metabolismo , Isomerases/genética , Isomerases/metabolismo , Modelos Biológicos , Oxirredutases/genética , Oxirredutases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Mapeamento por Restrição , Salicilatos/metabolismo , Ácido Salicílico , Espectrofotometria Ultravioleta
14.
Appl Environ Microbiol ; 57(12): 3679-82, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1785941

RESUMO

A unique cytosolic enzyme that hydrolyzes the carbamate linkage of the insecticide carbaryl (1-naphthyl N-methylcarbamate) was purified from extracts of Pseudomonas sp. strain CRL-OK. Substrates of the hydrolase include the N-methylcarbamate pesticides carbofuran and aldicarb but not the phenylcarbamate isopropyl m-chlorocarbanilate, the thiocarbamate S-ethyl N,N-dipropylthiocarbamate, or the dimethylcarbamate o-nitrophenyldimethylcarbamate.


Assuntos
Amidoidrolases/metabolismo , Carbamatos/metabolismo , Pseudomonas/enzimologia , Amidoidrolases/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Cinética , Estrutura Molecular , Especificidade por Substrato
15.
J Bacteriol ; 173(3): 1363-6, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1991731

RESUMO

DNA encoding the catabolism of the s-triazines ammelide and cyanuric acid was cloned from Pseudomonas sp. strain NRRLB-12228 and Klebsiella pneumoniae 99 with, as a probe, a 4.6-kb PstI fragment from a third strain, Pseudomonas sp. strain NRRLB-12227, which also encodes these activities. In strains NRRLB-12228 and 99 the ammelide aminohydrolase (trzC) and cyanuric acid amidohydrolase (trzD) genes are located on identical 4.6-kb PstI fragments which are part of a 12.4-kb DNA segment present in both strains. Strain NRRLB-12227 also carries this 12.4-kb DNA segment, except that a DNA segment of 0.8 to 1.85 kb encoding a third enzyme, ammeline aminohydrolase (trzB), has been inserted next to the ammelide aminohydrolase gene with the accompanying deletion of 1.1 to 2.15 kb of DNA. In addition, the s-triazine catabolic genes are flanked in strain NRRLB-12227 by apparently identical 2.2-kb segments that are not present in the other two strains and that seem to cause rearrangements in adjacent DNA.


Assuntos
Amidoidrolases/genética , Aminoidrolases/genética , Klebsiella pneumoniae/genética , Pseudomonas/genética , Triazinas/metabolismo , Amidoidrolases/metabolismo , Aminoidrolases/metabolismo , Clonagem Molecular , Genes Bacterianos , Klebsiella pneumoniae/enzimologia , Estrutura Molecular , Pseudomonas/enzimologia , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico
16.
J Bacteriol ; 173(3): 1215-22, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1846859

RESUMO

Pseudomonas sp. strain NRRLB-12227 degrades the s-triazine melamine by a six-step pathway which allows it to use melamine and pathway intermediates as nitrogen sources. With the plasmid pLG221, mutants defective in five of the six steps of the pathway were generated. Tn5-containing-EcoRI fragments from these mutants were cloned and identified by selection for Tn5-encoded kanamycin resistance in transformants. A restriction fragment from ammelide-negative mutant RE411 was used as a probe in colony hybridization experiments to identify cloned wild-type s-triazine catabolic genes encoding ammeline aminohydrolase, ammelide aminohydrolase, and cyanuric acid amidohydrolase. These genes were cloned from total cellular DNA on several similar, but not identical, HindIII fragments, as well as on a PstI fragment and a BglII fragment. Restriction mapping and Southern hybridization analyses of these cloned DNA fragments suggested that these s-triazine catabolic genes may be located on a transposable element, the ends of which are identical 2.2-kb insertion sequences.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Pseudomonas/genética , Triazinas/metabolismo , Southern Blotting , Clonagem Molecular , Plasmídeos , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição
17.
J Gen Microbiol ; 133(9): 2473-6, 1987 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-3448154

RESUMO

When Micrococcus strain 12B grown on o-phthalate was incubated with 3-methylphthalate, three compounds accumulated. These were shown to be 2-pyrone-3-methyl-4,6-dicarboxylic acid, 3,4-dihydroxy-6-methylphthalic acid, and 5-hydroxy-3-methyphthalic acid, all previously undescribed. A pathway for the formation of these compounds is proposed.


Assuntos
Micrococcus/metabolismo , Ácidos Ftálicos/farmacocinética , Biotransformação , Cromatografia em Gel
18.
J Bacteriol ; 168(1): 123-31, 1986 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-3019995

RESUMO

A Pseudomonas putida strain designated RE204, able to utilize isopropylbenzene as the sole carbon and energy source, was isolated. Tn5 transposon mutagenesis by means of the suicide transposon donor plasmid pLG221 yielded mutant derivatives defective in isopropylbenzene metabolism. These were characterized by the identification of the products which they accumulated when grown in the presence of isopropylbenzene and by the assay of enzyme activities in cell extracts. Based on the results obtained, the following metabolic pathway is proposed: isopropylbenzene----2,3-dihydro -2,3-dihydroxyisopropylbenzene----3-isopropylcatechol----2 -hydroxy-6-oxo-7-methylocta-2,4-dienoate----isobutyrate + 2-oxopent-4-enoate----amphibolic intermediates. Plasmid DNA was isolated from strain RE204 and mutant derivatives and characterized by restriction enzyme cleavage analysis. Isopropylbenzene-negative isolates carried a Tn5 insert within a 15-kilobase region of a 105-kilobase plasmid designated pRE4. DNA fragments of pRE4 carrying genes encoding isopropylbenzene catabolic enzymes were cloned in Escherichia coli with various plasmid vectors; clones were identified by (i) selection for Tn5-encoded kanamycin resistance in the case of Tn5 mutant plasmids, (ii) screening for isopropylbenzene dioxygenase-catalyzed oxidation of indole to indigo, and (iii) use of a Tn5-carrying restriction fragment, derived from a pRE4::Tn5 mutant plasmid, as a probe for clones carrying wild-type restriction fragments. These clones were subsequently used to generate a transposon insertion and restriction enzyme cleavage map of the isopropylbenzene metabolic region of pRE4.


Assuntos
Derivados de Benzeno/metabolismo , Dioxigenases , Plasmídeos , Pseudomonas/metabolismo , Clonagem Molecular , Elementos de DNA Transponíveis , Mutação , Oxigenases/genética , Pseudomonas/enzimologia , Pseudomonas/genética
19.
J Bacteriol ; 168(1): 428-30, 1986 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-3020004

RESUMO

The genes encoding isopropylbenzene metabolism in Pseudomonas putida RE204 are readily lost in two ways: by loss (curing) of plasmid pRE4 which specifies the catabolic pathway and by deletion from pRE4 of an approximately 20-kilobase segment of DNA carrying the catabolic genes. The presence of DNA sequences at the ends of the catabolic gene region sharing homology with one another suggests that the deletions result from recombination events between these homologous sequences.


Assuntos
Derivados de Benzeno/metabolismo , Genes Bacterianos , Plasmídeos , Pseudomonas/genética , Deleção Cromossômica , Elementos de DNA Transponíveis , Mutação , Pseudomonas/metabolismo , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA