Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6140, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253357

RESUMO

In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO3, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO3 opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.

2.
Sci Rep ; 12(1): 12030, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835771

RESUMO

An array of spin torque nano-oscillators (STNOs), coupled by dipolar interaction and arranged on a ring, has been studied numerically and analytically. The phase patterns and locking ranges are extracted as a function of the number N, their separation, and the current density mismatch between selected subgroups of STNOs. If [Formula: see text] for identical current densities through all STNOs, two degenerated modes are identified an in-phase mode (all STNOs have the same phase) and a splay mode (the phase makes a 2[Formula: see text] turn along the ring). When inducing a current density mismatch between two subgroups, additional phase shifts occur. The locking range (maximum current density mismatch) of the in-phase mode is larger than the one for the splay mode and depends on the number N of STNOs on the ring as well as on the separation. These results can be used for the development of magnetic devices that are based on STNO arrays.

3.
Nat Commun ; 11(1): 6332, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303758

RESUMO

Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be ≤ 10-5 as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices.

4.
Sci Rep ; 8(1): 1728, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379128

RESUMO

Integration of Spin Torque Nano-Oscillators STNO's in conventional microwave circuits means that the devices have to meet certain specifications. One of the most important criteria is the phase noise, being the key parameter to evaluate the performance and define possible applications. Phase locking several oscillators together has been suggested as a possible means to decrease phase noise and consequently, the linewidth. In this work we present experiments, numerical simulations and an analytic model to describe the effects of thermal noise in the injection locking of a tunnel junction based STNO. The analytics show the relation of the intrinsic parameters of the STNO with the phase noise level, opening the path to tailor the spectral characteristics by the magnetic configuration. Experiments and simulations demonstrate that in the in-plane magnetized structure, while the frequency is locked, much higher reference currents are needed to reduce the noise by phase locking. Moreover, our analysis shows that it is possible to control the phase noise by the reference microwave current (IRF) and that it can be further reduced by increasing the bias current (IDC) of the oscillator, keeping the reference current in feasible limits for applications.

5.
Nano Lett ; 17(12): 7234-7241, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148808

RESUMO

The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

6.
Phys Rev Lett ; 109(12): 127202, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005979

RESUMO

We report a novel depth dependence for the penetration of spin current into ultrathin ferromagnets. Ferromagnetic resonance measurements show that transverse spin current pumped into three structurally distinct ferromagnets is attenuated, on reflection, by an amount proportional to the ferromagnetic layer thickness, saturating abruptly at 1.2 ± 0.1 nm. The observed power-law decay, differing significantly from the (exponential) characteristic-length dependence for longitudinal spin current, confirms models of spin momentum transfer which have been inaccessible to experiment.

7.
Phys Rev Lett ; 102(25): 257202, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19659115

RESUMO

Single-shot, time-resolved measurements are presented to investigate the temporal coherence of the microwave emission for MgO based magnetic tunnel junction spin torque oscillators. The time-domain data reveal that the steady state regime obtained from frequency-domain analysis can be subdivided into two regimes as a function of spin polarized current amplitude. According to these two regimes, two mechanisms that limit the temporal coherence are identified. At low current, extinctions of the steady state oscillations lead to a very short coherence time on the order of a few nanoseconds, while at higher current, the extinctions vanish and the coherence time saturates around 40 ns. As an important result it is shown that the latter is limited by frequency fluctuations. Quenching these frequency fluctuations suggests an intrinsic linewidth that is by a factor of 20 below the one of the free running oscillator.

8.
Nat Mater ; 6(6): 441-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468761

RESUMO

Spintronics materials have recently been considered for radio-frequency devices such as oscillators by exploiting the transfer of spin angular momentum between a spin-polarized electrical current and the magnetic nanostructure it passes through. While previous spin-transfer oscillators (STOs) were based on in-plane magnetized structures, here we present the realization of an STO that contains a perpendicular spin current polarizer combined with an in-plane magnetized free layer. This device is characterized by high-frequency oscillations of the free-layer magnetization, consistent with out-of-plane steady-state precessions induced at the threshold current by a spin-transfer torque from perpendicularly polarized electrons. The results are summarized in static and dynamic current-field state diagrams and will be of importance for the design of STOs with enhanced output signals.

9.
Phys Rev Lett ; 98(7): 077203, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17359055

RESUMO

Voltage noise measurements were performed in the 3-7 GHz frequency range on magnetic tunnel junctions biased with a dc current. Magnetic noise associated with ferromagnetic resonance excitations is either amplified or reduced depending on the direction of the bias current. This effect is interpreted as the influence of spin transfer torque on the magnetization fluctuations and described using Gilbert dynamics equation including spin transfer torque and effective field terms.

10.
Phys Rev Lett ; 86(6): 1102-5, 2001 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11178020

RESUMO

Measurements are reported on the magnetization reversal in submicron magnetic rings fabricated by high-resolution electron beam lithography and lift-off from cobalt thin films. For all dimensions investigated, with diameters of 300-800 nm and a thickness of 10-50 nm, the flux closure state is the stable magnetization configuration. However, with increasing diameter and decreasing film thickness a metastable near single domain state can be obtained during the reversal process in an in-plane applied field.

11.
Phys Rev Lett ; 84(5): 983-6, 2000 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11017421

RESUMO

An enhancement of the resistance due to the presence of only one or two isolated domain walls is clearly evidenced by transport measurements in 35 nm epitaxial Co wires, 20 &mgr;m long. The deduced relative change in the resistivity is at least 1 order of magnitude larger than the one predicted from a model based on the mixing of spin channels occurring over the length scale of the domain wall width [P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997)]. This inconsistency can be resolved by taking the effect of spin accumulation into account, which scales in the case of Co over the much larger distance of the spin diffusion length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA