Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(30): 16615-16622, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31317171

RESUMO

Clean surface gold nanoparticles (AuNPs) of ∼6.6 nm that were confined in ionic liquid (IL) cages of hybrid γ-alumina (γ-Al2O3) displayed hydrogenation pathways in the reduction of trans-cinnamaldehyde distinct from those imprinted directly onto γ-Al2O3. Hydrogen activation proceeded via homolytic activation in IL-encapsulated AuNPs and via heterolytic cleavage for IL-free supported AuNPs. Higher negative apparent entropy (ΔSapp) values were obtained for the IL-confined AuNPs compared to the non-hybrid catalyst (Au/γ-Al2O3), suggesting a decrease in the number of microstates induced by the nano-confined environment. High kinetic isotope effect (KIE) values (kH/kD = 2.5-2.9 at 273 K) and Arrhenius convex curves were observed. Furthermore, differences of 5.6 and 6.2 kJ mol-1 between the apparent activation energies of the deuteration and hydrogenation reactions (E-E) associated with pre-exponential factor ratios (AD/AH) of 4.6 and 5.1 provided strong evidence of the possible involvement of a tunneling pathway in the case of the confined AuNPs.

2.
J Nanosci Nanotechnol ; 18(3): 2075-2078, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448716

RESUMO

A simple method based on sputtering deposition of Pd onto mesoporous SiO2 (SBA-15) was employed to produce supported Pd nanoparticles (NPs) that can be used as hydrogenation catalysts. The use of sputtering deposition eliminates contaminants and avoids additional drawbacks of traditional chemical methods applied to prepare heterogeneous supported metal catalysts. A mechanical resonant stirrer was used to revolve the SBA-15 powder and ensure homogeneous distribution of the Pd NPs over the support. The SBA-15 pores act as templates for Pd NPs and drive nanostructure growth. Consequently, the NPs obtained have the same diameter as that of the SBA-15 channels (~5 nm) and elongated particles are formed as sputtering deposition increases. The SBA-15 supported Pd NPs (Pd NPs/SBA-15) were tested in a probe hydrogenation of cyclohexene reaction to evaluate the catalytic activity of the Pd NPs. Turnover frequency (TOF) of 2000 min-1 were achieved with the lower Pd NPs concentration (0.15 wt%) catalyst.

3.
ACS Appl Mater Interfaces ; 7(15): 7987-94, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25816196

RESUMO

Copper catalysts are very promising, affordable alternatives for noble metals in CO oxidation; however, the nature of the active species remains unclear and differs throughout previous reports. Here, we report the preparation of 8 nm copper nanoparticles (Cu NPs), with high metallic content, directly deposited onto the surface of silica nanopowders by magnetron sputtering deposition. The as-prepared Cu/SiO2 contains 85% Cu0 and 15% Cu2+ and was enriched in the Cu0 phase by H2 soft pretreatment (96% Cu0 and 4% Cu2+) or further oxidized after treatment with O2 (33% Cu0 and 67% Cu2+). These catalysts were studied in the catalytic oxidation of CO under dry and humid conditions. Higher activity was observed for the sample previously reduced with H2, suggesting that the presence of Cu-metal species enhances CO oxidation performance. Inversely, a poorer performance was observed for the sample previously oxidized with O2. The presence of water vapor caused only a small increase in the temperature require for the reaction to reach 100% conversion. Under dry conditions, the Cu NP catalyst was able to maintain full conversion for up to 45 h at 350 °C, but it deactivated with time on stream in the presence of water vapor.

4.
Dalton Trans ; 44(6): 2827-34, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25531917

RESUMO

Well-distributed Ru nanoparticles (Ru-NPs) were produced over Al(2)O(3) supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a Ru foil. These Ru-NPs were active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic behaviours were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 2.73 s(-1) were achieved with Ru-NPs of 6.4 nm supported in Al(2)O(3) modified with an IL containing the N(SO(2)CF(3))2(-) anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for Ru-NPs of 6.6 nm in the case where Cl(-) and BF(4)(-) anions were used. Such observations strongly suggest that thin layers of ILs surround the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled Ru-NPs with tuneable reactivity.

5.
Phys Chem Chem Phys ; 16(34): 18088-91, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25057970

RESUMO

Hybrid organosilicas prepared by sol-gel processes using 1-n-butyl-3-(3-trimethoxysilylpropyl)-imidazolium cations associated with hydrophilic and hydrophobic anions can be easily decorated with well dispersed and similar size (1.8-2.1 nm) Pd nanoparticles (Pd-NPs) by simple sputtering-deposition. Higher Pd concentration at the surface compared to the deeper region is obtained in the supports with smaller pore diameter (containing hydrophobic ILs) than in supports with the largest pore diameter (containing hydrophilic ILs). The IL hydrophobicity plays a central role in the hydrogenation of dienes by controlling the diene access to NP surface active sites.

6.
Chem Commun (Camb) ; 49(13): 1273-5, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23306602

RESUMO

A simple one-step method based on the sputtering deposition of Ni nanoparticles (NP) has been developed for the production of magnetic biocatalysts, avoiding the complications and drawbacks of methods based on chemical functionalisation or coating of magnetic NP. This new technique provided high levels of recovery, reusability and catalytic activity for the lipase-Ni biocatalyst.


Assuntos
Biocatálise , Lipase/química , Lipase/metabolismo , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Níquel/química , Burkholderia cepacia/enzimologia , Esterificação , Hidrólise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...