Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34946811

RESUMO

Congenital primary hypothyroidism (CH; OMIM 218700) is characterized by an impaired thyroid development, or dyshormonogenesis, and can lead to intellectual disability and growth retardation if untreated. Most of the children with congenital hypothyroidism present thyroid dysgenesis, a developmental anomaly of the thyroid. Various genes have been associated with thyroid dysgenesis, but all known genes together can only explain a small number of cases. To identify novel genetic causes for congenital hypothyroidism, we performed trio whole-exome sequencing in an affected newborn and his unaffected parents. A predicted damaging de novo missense mutation was identified in the ZBTB26 gene (Zinc Finger A and BTB Domain containing 26). An additional cohort screening of 156 individuals with congenital thyroid dysgenesis identified two additional ZBTB26 gene variants of unknown significance. To study the underlying disease mechanism, morpholino knock-down of zbtb26 in Xenopus laevis was carried out, which demonstrated significantly smaller thyroid anlagen in knock-down animals at tadpole stage. Marker genes expressed in thyroid tissue precursors also indicated a specific reduction in the Xenopus ortholog of human Paired-Box-Protein PAX8, a transcription factor required for thyroid development, which could be rescued by adding zbtb26. Pathway and network analysis indicated network links of ZBTB26 to PAX8 and other genes involved in thyroid genesis and function. GWAS associations of ZBTB26 were found with height. Together, our study added a novel genetic risk factor to the list of genes underlying congenital primary hypothyroidism and provides additional support that de novo mutations, together with inherited variants, might contribute to the genetic susceptibility to CH.


Assuntos
Hipotireoidismo Congênito/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação de Sentido Incorreto/genética , Animais , Criança , Humanos , Masculino , Fatores de Risco , Glândula Tireoide/patologia , Sequenciamento do Exoma/métodos , Xenopus laevis/genética
2.
Front Endocrinol (Lausanne) ; 12: 660731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194391

RESUMO

Human growth is a complex trait. A considerable number of gene defects have been shown to cause short stature, but there are only few examples of genetic causes of non-syndromic tall stature. Besides rare variants with large effects and common risk alleles with small effect size, oligogenic effects may contribute to this phenotype. Exome sequencing was carried out in a tall male (height 3.5 SDS) and his parents. Filtered damaging variants with high CADD scores were validated by Sanger sequencing in the trio and three other affected and one unaffected family members. Network analysis was carried out to assess links between the candidate genes, and the transcriptome of murine growth plate was analyzed by microarray as well as RNA Seq. Heterozygous gene variants in CEP104, CROCC, NEK1, TOM1L2, and TSTD2 predicted as damaging were found to be shared between the four tall family members. Three of the five genes (CEP104, CROCC, and NEK1) belong to the ciliary gene family. All genes are expressed in mouse growth plate. Pathway and network analyses indicated close functional connections. Together, these data expand the spectrum of genes with a role in linear growth and tall stature phenotypes.


Assuntos
Estatura/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Transtornos do Crescimento/genética , Quinase 1 Relacionada a NIMA/genética , Tiossulfato Sulfurtransferase/genética , Adolescente , Animais , Criança , Pré-Escolar , Exoma , Feminino , Expressão Gênica , Lâmina de Crescimento/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Países Baixos , Linhagem
3.
Horm Res Paediatr ; 93(1): 16-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428920

RESUMO

BACKGROUND: Congenital primary hypothyroidism (CH) is the most common endocrine disorder in neonates. METHODS: To identify novel genes, we performed whole exome sequencing (WES) in 6 patients with CH due to thyroid dysgenesis (TD). The potential effects of the most relevant variants were analyzed using in silico prediction tools. The most promising candidate gene, transient receptor potential channel 4-associated protein (TRPC4AP), was sequenced in 179 further patients with TD. Expression of TRPC4AP in human thyroid was investigated using RT-PCR. Trpc4ap- functional analysis was performed in Xenopus laevis using Morpholino (MO) antisense oligomers. RESULTS: WES identified a likely damaging mutation in TRPC4AP leading to a de novo stop codon p.Q552*. Targeted sequencing of TRPC4AP demonstrated gene variants with predicted damaging potential in 5 patients resulting each in an amino acid exchange (p.P706S, p.F729L, p.S777C, and p.N229S). We demonstrated that TRPC4AP is expressed in human thyroid gland tissue. Using Xenopus laevis, we showed that the volume of the tadpole thyroid anlage was reduced by 20% in Trpc4ap MO knockdowns compared to controls and by 41% in "Clustered Regularly Interspaced Short Palindromic Repeats"/Cas9-mediated gene knockout experiments. DISCUSSION: A recognized interaction of TRPC4AP and the NF-kappa-B-essential-modulator encoded by IKBKG gene was identified by IPA analysis. IKBKG plays a role in activation of the NF-κB-signaling pathway and regulates genes involved in proliferation and survival of thyrocytes and expression of key enzymes of thyroid hormone synthesis. CONCLUSION: TRPC4AP was identified as a novel candidate gene in TD, but further studies are needed to validate its role in thyroid function.


Assuntos
Hipotireoidismo Congênito/genética , Quinase I-kappa B/genética , Mutação , Canais de Cátion TRPC/genética , Disgenesia da Tireoide/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Humanos , Masculino , NF-kappa B/metabolismo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...