Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32003744

RESUMO

Trypanosomes have a trypanothione redox metabolism that provides the reducing equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of the thiol redox homeostasis in the single mitochondrion of these parasites has remained largely unknown. Here we expressed Tpx-roGFP2, roGFP2-hGrx1 or roGFP2 in either the cytosol or mitochondrion of Trypanosoma brucei. We show that the novel Tpx-roGFP2 is a superior probe for the trypanothione redox couple and that the mitochondrial matrix harbors a trypanothione system. Inhibition of trypanothione biosynthesis by the anti-trypanosomal drug Eflornithine impairs the ability of the cytosol and mitochondrion to cope with exogenous oxidative stresses, indicating a direct link between both thiol systems. Tpx depletion abolishes the cytosolic, but only partially affects the mitochondrial sensor response to H2O2. This strongly suggests that the mitochondrion harbors some Tpx and, another, as yet unidentified, oxidoreductase.


Trypanosoma brucei are single-celled parasites that cause human sleeping sickness and animal diseases. Like in other organisms, the parasite contains different compartments, each having several specific roles. The mitochondrion is the compartment that provides most of the energy needed to keep the cell alive. Many cellular processes, such as those that happen in the mitochondrion, produce compounds including hydrogen peroxide that can cause 'oxidative damage'. To counteract this, cells make small molecules called thiols. These thiols provide 'reducing' power to chemically balance out the oxidative damage. Trypanosomes have an unusual thiol system that relies on a molecule called trypanothione. Trypanosoma brucei cells make trypanothione in the cytosol, the fluid which surrounds all cellular compartments; here it is also used up with the help of a protein called tryparedoxin. However, it was not known which thiols are present in the mitochondrion. Ebersoll et al. have now made a molecular sensor that can detect trypanothione. The sensor includes a fluorescent protein, which changes its brightness based on its oxidation state, fused to the tryparedoxin protein. This probe could either be put in the cytosol or mitochondrion of Trypanosoma brucei cells. Treating the cells with hydrogen peroxide changed the fluorescence of the biosensor. Trypanosoma brucei cells without tryparedoxin protein in their cytosol still responded to an oxidative challenge in the mitochondrion. The experiments reveal that trypanosomes do have a mitochondrial trypanothione system. This new fluorescent biosensor will be used to study how other cellular compartments deal with oxidative conditions. The tests will reveal how different compartments communicate with each other to counteract the stress. The sensor could also be used to determine how anti-parasite drugs affect the cells' trypanothione system.


Assuntos
Glutationa/análogos & derivados , Mitocôndrias/metabolismo , Espermidina/análogos & derivados , Tiorredoxinas/metabolismo , Trypanosoma brucei brucei/metabolismo , Técnicas Biossensoriais , Eflornitina/farmacologia , Glutationa/biossíntese , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espermidina/biossíntese , Espermidina/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos
2.
Redox Biol ; 15: 532-547, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413965

RESUMO

Trypanosoma brucei glutaredoxin 2 (Grx2) is a dithiol glutaredoxin that is specifically located in the mitochondrial intermembrane space. Bloodstream form parasites lacking Grx2 or both, Grx2 and the cytosolic Grx1, are viable in vitro and infectious to mice suggesting that neither oxidoreductase is needed for survival or infectivity to mammals. A 37 °C to 39 °C shift changes the cellular redox milieu of bloodstream cells to more oxidizing conditions and induces a significantly stronger growth arrest in wildtype parasites compared to the mutant cells. Grx2-deficient cells ectopically expressing the wildtype form of Grx2 with its C31QFC34 active site, but not the C34S mutant, regain the sensitivity of the parental strain, indicating that the physiological role of Grx2 requires both active site cysteines. In the procyclic insect stage of the parasite, Grx2 is essential. Both alleles can be replaced if procyclic cells ectopically express authentic or C34S, but not C31S/C34S Grx2, pointing to a redox role that relies on a monothiol mechanism. RNA-interference against Grx2 causes a virtually irreversible proliferation defect. The cells adopt an elongated morphology but do not show any significant alteration in the cell cycle. The growth retardation is attenuated by high glucose concentrations. Under these conditions, procyclic cells obtain ATP by substrate level phosphorylation suggesting that Grx2 might regulate a respiratory chain component.


Assuntos
Adaptação Fisiológica/genética , Glutarredoxinas/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/metabolismo , Trifosfato de Adenosina/metabolismo , Alelos , Animais , Domínio Catalítico , Proliferação de Células/genética , Citosol/metabolismo , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Temperatura Alta , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Membranas Mitocondriais/metabolismo , Mutação , Oxirredução , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...