Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(4): 046704, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763433

RESUMO

Tuning of the anisotropic Gilbert damping Δα has been realized in ultrathin single-crystalline Fe films grown on GaAs (001). A nonmonotonic dependence of Δα on film thickness t is observed upon varying t about 10 ML (∼1.4 nm). Δα increases for 16 ML>t>8.5 ML, and then decreases for 8.5 ML>t>6.5 ML accompanied by a sign reversal of Δα for t=6.5 ML. The sign reversal of Δα is captured by first-principle calculations, which show that the anisotropic density of states changes sign upon decreasing t. Moreover, t^{-1} dependence of the anisotropic damping indicates the emergence of an anisotropic effective spin mixing conductance according to the theory of spin pumping. The results establish new opportunities for controlling the Gilbert damping and for fundamental studies of magnetization dynamics in reduced dimension.

2.
J Phys Condens Matter ; 33(11): 115001, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33316786

RESUMO

Spin-dependent reflection of low-energy electrons at the W(110) surface caused by spin-orbit interaction was studied experimentally and theoretically. Comprehensive information for a wide range of electron incidence angles and energies was collected via maps for the reflectivity, the spin-dependent reflection asymmetry, and the figure of merit of the spin separation. The experimental results are compared with calculations of the scattering process using a realistic surface potential barrier. The results are discussed in view of possible applications of W(110) as a scattering target in spin-polarization detectors. Possible working points for use in single- as well as multi-channel spin-polarization-detection devices are identified and discussed.

3.
Phys Rev Lett ; 125(21): 216404, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274965

RESUMO

We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe_{2} for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the hidden orbital pseudospin texture leaves its imprint on TRDAD, due to multiple orbital interference effects in photoemission. Our experimental results are in quantitative agreement with both the tight-binding model and state-of-the-art fully relativistic calculations performed using the one-step model of photoemission. While spin-resolved ARPES probes the spin component of entangled spin-orbital texture in multiorbital systems, we unambiguously demonstrate that TRDAD reveals its orbital pseudospin texture counterpart.

4.
Nature ; 576(7787): 423-428, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31853081

RESUMO

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1-8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

5.
Nat Mater ; 16(10): 977-981, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28892056

RESUMO

The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect and the spin Peltier effect already observed, our picture of pure spin current transport is almost complete. The only missing piece is the spin Nernst (-Ettingshausen) effect, which so far has been discussed only on theoretical grounds. Here, we report the observation of the spin Nernst effect. By applying a longitudinal temperature gradient, we generate a pure transverse spin current in a Pt thin film. For readout, we exploit the magnetization-orientation-dependent spin transfer to an adjacent yttrium iron garnet layer, converting the spin Nernst current in Pt into a controlled change of the longitudinal and transverse thermopower voltage. Our experiments show that the spin Nernst and the spin Hall effect in Pt are of comparable magnitude, but differ in sign, as corroborated by first-principles calculations.


Assuntos
Ferro , Temperatura
6.
Ultramicroscopy ; 183: 19-29, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28705441

RESUMO

The combination of momentum microscopy (high resolution imaging of the Fourier plane) with an imaging spin filter has recently set a benchmark in k-resolution and spin-detection efficiency. Here we show that the degree of parallelization can be further increased by time-of-flight energy recording. On the quest towards maximum information (in earlier work termed "complete" photoemission experiment) we have studied the prototypical high-Z fcc metal iridium. Large partial bandgaps and strong spin-orbit interaction lead to a sequence of spin-polarized surface resonances. Soft X-rays give access to the 4D spectral density function ρ (EB,kx,ky,kz) weighted by the photoemission cross section. The Fermi surface and all other energy isosurfaces, Fermi velocity distribution vF(kF), electron or hole conductivity, effective mass and inner potential can be obtained from the multi-dimensional array ρ by simple algorithms. Polarized light reveals the linear and circular dichroism texture in a simple manner and an imaging spin filter exposes the spin texture. One-step photoemission calculations are in fair agreement with experiment. Comparison of the Bloch spectral function with photoemission calculations uncovers that the observed high spin polarization of photoelectrons from bulk bands originates from the photoemission step and is not present in the initial state.

7.
Phys Rev Lett ; 117(16): 167204, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792386

RESUMO

Within a combined experimental and theoretical study it is shown that the spin Hall angle of a substitutional alloy system can be continuously varied via its composition. For the alloy system Au_{x}Pt_{1-x} a substantial increase of the maximum spin Hall angle compared to the pure alloy partners could be achieved this way. The experimental findings for the longitudinal charge conductivity σ, the transverse spin Hall conductivity σ_{SH}, and the spin Hall angle α_{SH} could be confirmed by calculations based on Kubo's linear response formalism. Calculations of these response quantities for different temperatures show that the divergent behavior of σ and σ_{SH} is rapidly suppressed with increasing temperature. As a consequence, σ_{SH} is dominated at higher temperatures by its intrinsic contribution that has only a rather weak temperature dependence.

8.
Nat Commun ; 7: 13071, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767052

RESUMO

Entanglement of the spin-orbit and magnetic order in multiferroic materials bears a strong potential for engineering novel electronic and spintronic devices. Here, we explore the electron and spin structure of ferroelectric α-GeTe thin films doped with ferromagnetic Mn impurities to achieve its multiferroic functionality. We use bulk-sensitive soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to follow hybridization of the GeTe valence band with the Mn dopants. We observe a gradual opening of the Zeeman gap in the bulk Rashba bands around the Dirac point with increase of the Mn concentration, indicative of the ferromagnetic order, at persistent Rashba splitting. Furthermore, subtle details regarding the spin-orbit and magnetic order entanglement are deduced from spin-resolved ARPES measurements. We identify antiparallel orientation of the ferroelectric and ferromagnetic polarization, and altering of the Rashba-type spin helicity by magnetic switching. Our experimental results are supported by first-principles calculations of the electron and spin structure.

9.
J Phys Condens Matter ; 28(43): 436004, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27603180

RESUMO

Co/BaTiO3(0 0 1) is one of the most interesting multiferroic heterostructures as it combines different ferroic phases, setting this way the fundamentals for innovative technical applications. Various theoretical approaches have been applied to investigate the electronic and magnetic properties of Co/BaTiO3(0 0 1). Here we determine the magnetic properties of 3 ML Co/BaTiO3 by calculating spin-polarized electron diffraction as well as angle-resolved photoemission spectra, with both methods being well established as surface sensitive techniques. Furthermore, we discuss the impact of altering the BaTiO3 polarization on the spectra and ascribe the observed changes to characteristic details of the electronic structure.

10.
Sci Rep ; 6: 29394, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406652

RESUMO

We find in the case of W(110) previously overlooked anomalous surface states having their spin locked at right angle to their momentum using spin-resolved momentum microscopy. In addition to the well known Dirac-like surface state with Rashba spin texture near the -point, we observe a tilted Dirac cone with circularly shaped cross section and a Dirac crossing at 0.28 × within the projected bulk band gap of tungsten. This state has eye-catching similarities to the spin-locked surface state of a topological insulator. The experiments are fortified by a one-step photoemission calculation in its density-matrix formulation.

11.
Acta Crystallogr A Found Adv ; 72(Pt 2): 197-205, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26919371

RESUMO

This paper discusses the possibility of using Compton scattering--an inelastic X-ray scattering process that yields a projection of the electron momentum density--to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and the first experimental results are shown, on a single-domain crystal of GaFeO3. The measured antisymmetric Compton profile is very small (≃ 10(-5) of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin-orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.

12.
Nat Commun ; 7: 10559, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892831

RESUMO

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.

13.
J Phys Condens Matter ; 27(48): 485201, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26566244

RESUMO

We propose a method to deal with the so-called near-field corrections to the solution of the Poisson equation for full-potential first-principles calculations using the exact two-center expansion for the inverse of the distance between two points. It is demonstrated that the method gives a very satisfying solution to the Poisson equation for plane-wave charge densities which can be solved analytically. The present method gives reasonable total energy for lattice distortions where the conventional multipole expansion gives large errors.

14.
Ultramicroscopy ; 159 Pt 3: 453-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363904

RESUMO

The electronic surface states on Mo(110) have been investigated using time-of-flight momentum microscopy with synchrotron radiation (hν=35 eV). This novel angle-resolved photoemission approach yields a simultaneous acquisition of the E-vs-k spectral function in the full surface Brillouin zone and several eV energy interval. (kx,ky,EB)-maps with 3.4 Å(-1) diameter reveal a rich structure of d-like surface resonances in the spin-orbit induced partial band gap. Calculations using the one-step model in its density matrix formulation predict an anomalous state with Dirac-like signature and Rashba spin texture crossing the bandgap at Γ¯ and EB=1.2 eV. The experiment shows that the linear dispersion persists away from the Γ¯-point in an extended energy- and k∥-range. Analogously to a similar state previously found on W(110) the dispersion is linear along H¯-Γ¯-H¯ and almost zero along N¯-Γ¯-N¯. The similarity is surprising since the spin-orbit interaction is 5 times smaller in Mo. A second point with unusual topology is found midway between Γ¯ and N¯. Band symmetries are probed by linear dichroism.

15.
Phys Rev Lett ; 114(9): 097401, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793848

RESUMO

The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

16.
J Phys Condens Matter ; 27(5): 056004, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25604525

RESUMO

A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.

17.
J Phys Condens Matter ; 26(41): 416002, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25237933

RESUMO

The electronic structure and magnetic properties of Mn1-xCrxSb alloys were investigated for the full concentration range. The stability of the concentration-dependent magnetic structure of the alloys were analysed on the basis of spin-spiral calculations as well as using the Monte Carlo (MC) simulations based on the Heisenberg model with the exchange coupling parameters calculated from first-principles. A leading contribution to the canted magnetic structure in Mn1-xCrxSb is the competition of the direct Cr-Cr and Mn-Mn exchange interactions having opposite signs. Furthermore, a strong impact of long-distance RKKY-type interactions is demonstrated. MC simulations at finite temperature were used to obtain the magnetic phase diagram for Mn1-xCrxSb alloys, which is in reasonable agreement with the experimental data.

18.
Phys Rev Lett ; 113(8): 086801, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192117

RESUMO

Using angle-resolved photoemission spectroscopy, we show that the recently discovered surface state on SrTiO(3) consists of nondegenerate t(2g) states with different dimensional characters. While the d(xy) bands have quasi-2D dispersions with weak k(z) dependence, the lifted d(xz)/d(yz) bands show 3D dispersions that differ significantly from bulk expectations and signal that electrons associated with those orbitals permeate the near-surface region. Like their more 2D counterparts, the size and character of the d(xz)/d(yz) Fermi surface components are essentially the same for different sample preparations. Irradiating SrTiO(3) in ultrahigh vacuum is one method observed so far to induce the "universal" surface metallic state. We reveal that during this process, changes in the oxygen valence band spectral weight that coincide with the emergence of surface conductivity are disproportionate to any change in the total intensity of the O 1s core level spectrum. This signifies that the formation of the metallic surface goes beyond a straightforward chemical doping scenario and occurs in conjunction with profound changes in the initial states and/or spatial distribution of near-E(F) electrons in the surface region.

19.
J Phys Condens Matter ; 26(27): 274206, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24935908

RESUMO

The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.


Assuntos
Algoritmos , Ligas/química , Campos Eletromagnéticos , Ferro/química , Modelos Químicos , Níquel/química , Simulação por Computador , Marcadores de Spin , Estatística como Assunto
20.
Nat Commun ; 5: 3974, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24875774

RESUMO

Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of (93(-11)(+7)) % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimental results are compared with advanced band structure and photoemission calculations which include surface effects. Excellent agreement is obtained with calculations, which show a highly spin polarized bulk-like surface resonance ingrained in a half metallic bulk band structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...