Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychol Res ; 88(3): 1007-1022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170225

RESUMO

The self-prioritization effect suggests that self-relevant information has a processing advantage over information that is not directly associated with the self. In consequence, reaction times are faster and accuracy rates higher when reacting to self-associated stimuli rather than to other-related stimuli (Sui et al., Journal of Experimental Psychology: Human Perception and Performance 38:1105-1117, 2012). This spurs the assumption that self-associated action-effects should also be perceived earlier than other-related outcomes. One way to measure this is temporal binding. Previous research indeed showed that the perceived temporal interval between actions and self-associated outcomes was reduced compared to friend- and other-associated outcomes. However, the employed method (interval estimations) and several experimental design choices make it impossible to discern whether the perceived shortening of the interval between a keypress and a self-relevant outcome is due to a perceptual shift of the action or of the action-effect or both. Thus, we conducted four experiments to assess whether temporal binding can indeed be modulated by self-relevance and if so where this perceptual bias is located. The results did not support stronger temporal binding for self- vs other-related action-effects. We discuss these results against the backdrop of the attentional basis of self-prioritization and propose directions for future research.


Assuntos
Atenção , Humanos , Tempo de Reação , Viés
3.
ACS Nano ; 16(2): 1802-1812, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935350

RESUMO

Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.


Assuntos
Nanotubos de Carbono , DNA , Nanotubos de Carbono/química , Polietilenoimina/química , Polímeros/química , RNA
4.
J Nanobiotechnology ; 19(1): 431, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930290

RESUMO

BACKGROUND: Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. RESULTS: Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. CONCLUSIONS: While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.


Assuntos
Arabidopsis/metabolismo , Materiais Biocompatíveis/química , Nanotubos de Carbono/química , Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , RNA/química , RNA/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Propriedades de Superfície , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...