Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623394

RESUMO

Spermatogenesis is an important process in reproduction and is conserved across species, but in Bombyx mori, it shows peculiarities, such as the maintenance of spermatogonia by apical cells and fertilization by dimorphic spermatozoa. In this study, we attempted to characterize the genes expressed in the testis of B. mori, focusing on aspects of expression patterns and gene function by transcriptome comparisons between different tissues, internal testis regions, and Drosophila melanogaster. The transcriptome analysis of 12 tissues of B. mori, including those of testis, revealed the widespread gene expression of 20,962 genes and 1705 testis-specific genes. A comparative analysis of the stem region (SR) and differentiated regions (DR) of the testis revealed 4554 and 3980 specific-enriched genes, respectively. In addition, comparisons with D. melanogaster testis transcriptome revealed homologs of 1204 SR and 389 DR specific-enriched genes that were similarly expressed in equivalent regions of Drosophila testis. Moreover, gene ontology (GO) enrichment analysis was performed for SR-specific enriched genes and DR-specific enriched genes, and the GO terms of several biological processes were enriched, confirming previous findings. This study advances our understanding of spermatogenesis in B. mori and provides an important basis for future research, filling a knowledge gap between fly and mammalian studies.

2.
Hum Antibodies ; 31(3): 27-33, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458030

RESUMO

BACKGROUND: A cost-effective and eco-friendly method is needed for the assessment of humoral immunity against SARS-CoV-2 in large populations. OBJECTIVE: We investigated the performance of an ELISA that uses silkworm-produced proteins to quantify the strain-specific anti-Spike IgG (anti-S IgG) titer. METHODS: The OD values for the anti-His-tag antibody, a standard material of ELISA quantification, were measured. Correlations between the ELISA for each strain and the Abbott SARS-CoV-2 IgG II Quant assay for the wild type were evaluated with serum samples from nine participants with various infection and vaccination statuses. RESULTS: Linear dose-responses were confirmed by high coefficients of determination: 0.994, 0.994, and 0.996 for the wild-type, Delta, and Omicron (BA.1) strain assays, respectively. The coefficient of determination for the wild-type and Delta strain assays was high at 0.959 and 0.892, respectively, while the Omicron strain assay had a relatively low value of 0.563. Booster vaccinees showed similar or higher titers against all strains compared to infected persons without vaccination. The Omicron-infected persons without vaccination had lower antibody titers against wild type than did the vaccinated persons. CONCLUSIONS: This study provides data indicating that the ELISA with silkworm-produced proteins makes it possible to discriminate and quantify the strain-specific anti-S IgG antibody induced by vaccination or infection.


Assuntos
Bombyx , COVID-19 , Humanos , Animais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ensaio de Imunoadsorção Enzimática , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Neutralizantes
3.
Vaccine ; 41(3): 766-777, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36528444

RESUMO

Noroviruses (NoVs) are one of the major causes of acute viral gastroenteritis in humans. Virus-like particles (VLPs) without genomes that mimic the capsid structure of viruses are promising vaccine candidates for the prevention of NoVs infection. To produce large amounts of recombinant protein, including VLPs, the silkworm-expression vector system (silkworm-BEVS) is an efficient and powerful tool. In this study, we constructed a recombinant baculovirus that expresses VP1 protein, the major structural protein of NoV GII.4. Expression analysis showed that the baculovirus-infected silkworm pupae expressed NoV VP1 protein more efficiently than silkworm larval fat bodies. We obtained about 4.9 mg of purified NoV VP1 protein from only five silkworm pupae. The purified VP1 protein was confirmed by dynamic light scattering and electron microscopy to form VLPs of approximately 40 nm in diameter. Antisera from mice immunized with the antigen blocked NoV VLPs binding to histo-blood group antigens of pig gastric mucin and also blocked NoV infection in intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells. Our findings demonstrated that NoV VLP eliciting protective antibodies could be obtained in milligram quantities from a few silkworm pupae using the silkworm-BEVS.


Assuntos
Partículas Artificiais Semelhantes a Vírus , Bombyx , Infecções por Caliciviridae , Gastroenterite , Norovirus , Animais , Humanos , Camundongos , Anticorpos , Anticorpos Antivirais , Bombyx/química , Bombyx/metabolismo , Infecções por Caliciviridae/prevenção & controle , Proteínas do Capsídeo/genética , Norovirus/genética , Norovirus/imunologia , Pupa , Suínos , Partículas Artificiais Semelhantes a Vírus/imunologia
4.
Insect Biochem Mol Biol ; 143: 103737, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101566

RESUMO

The ovary is an important organ in reproduction. In insects, especially lepidopteran insects, the oocytes and reproductive organs develop rapidly during the pupal stage. Despite their drastic morphological changes, the molecular mechanisms of ovary development are not fully understood. In this study, it is found that forkhead box transcription factor L2, member 1 (FoxL21), which is known to be involved in ovarian differentiation and maintenance in vertebrates, is required for the development of the ovary in the silkworm, Bombyx mori. FoxL21 was expressed in the ovary and ovariole during the larval and pupal stage, respectively. In silkworms in which FoxL21 was knocked out by genome editing, multiple ovarian dysfunctions, such as, abnormal egg formation, thinning of the ovariole sheaths, and defective connection of the oviductus geminus with the ovariole were observed. Finally, ovarian transplantation experiments using the knockout silkworms revealed that FoxL21 functions in the ovariole, but not in the oviductus geminus.


Assuntos
Bombyx , Animais , Bombyx/genética , Feminino , Oócitos , Oogênese/genética , Ovário , Pupa
5.
Vet Res ; 52(1): 102, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233749

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen of watery diarrhea that causes serious economic loss to the swine industry worldwide. Especially because of the high mortality rate in neonatal piglets, a vaccine with less production cost and high protective effect against PEDV is desired. The intrinsically assembled homotrimer of spike (S) protein on the PEDV viral membrane contributing to the host cell entry is a target of vaccine development. In this study, we designed trimerized PEDV S protein for efficient production in the silkworm-baculovirus expression vector system (silkworm-BEVS) and evaluated its immunogenicity in the mouse. The genetic fusion of the trimeric motif improved the expression of S protein in silkworm-BEVS. A small-scale screening of silkworm strains to further improve the S protein productivity finally achieved the yield of about 2 mg from the 10 mL larval serum. Mouse immunization study demonstrated that the trimerized S protein could elicit strong humoral immunity, including the S protein-specific IgG in the serum. These sera contained neutralizing antibodies that can protect Vero cells from PEDV infection. These results demonstrated that silkworm-BEVS provides a platform for the production of trimeric S proteins, which are promising subunit vaccines against coronaviruses such as PEDV.


Assuntos
Anticorpos Neutralizantes/biossíntese , Bombyx/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Seda/biossíntese , Glicoproteína da Espícula de Coronavírus/genética , Animais , Bombyx/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Camundongos , Vírus da Diarreia Epidêmica Suína/metabolismo , Multimerização Proteica
6.
Insects ; 12(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199525

RESUMO

The tumor necrosis factor α (TNFα) has been employed as a promising reagent in treating autoimmunity and cancer diseases. To meet the substantial requirement of TNFα proteins, we report in this study that mature types of recombinant human and murine TNFα proteins are successfully expressed in the baculovirus expression system using silkworm larvae as hosts. The biological activities of purified products were verified in culture murine L929 cells, showing better performance over a commercial Escherichia coli-derived murine TNFα. By comparing the activity of purified TNFα with or without the tag removal, it is also concluded that the overall activity of purified TNFα cytokines could be further improved by the complete removal of C-terminal fusion tags. Collectively, our current attempt demonstrates an alternative platform for supplying high-quality TNFα products with excellent activities for further pharmaceutical and clinical trials.

7.
Mol Biotechnol ; 63(12): 1223-1234, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34304364

RESUMO

COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Afinidade de Anticorpos , Baculoviridae/genética , Baculoviridae/imunologia , Biotecnologia , Bombyx/genética , Bombyx/imunologia , Células Cultivadas , Expressão Gênica , Hemolinfa/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/biossíntese , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , SARS-CoV-2/genética , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
8.
Front Immunol ; 12: 803647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095889

RESUMO

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.


Assuntos
Compostos de Alúmen/farmacologia , Hidróxido de Alumínio/farmacologia , Bombyx/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Galinhas/genética , Galinhas/imunologia , Chlorocebus aethiops , Euglena gracilis/imunologia , Infecções por Euglenozoa/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pandemias/prevenção & controle , SARS-CoV-2/imunologia , Vacinação/métodos , Células Vero
9.
Biochem Biophys Res Commun ; 529(2): 257-262, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703420

RESUMO

In the case of a new viral disease outbreak, an immediate development of virus detection kits and vaccines is required. For COVID-19, we established a rapid production procedure for SARS-CoV-2 spike protein (S protein) by using the baculovirus-silkworm expression system. The baculovirus vector-derived S proteins were successfully secreted to silkworm serum, whereas those formed insoluble structure in the larval fat body and the pupal cells. The ectodomain of S protein with the native sequence was cleaved by the host furin-protease, resulting in less recombinant protein production. The S protein modified in furin protease-target site was efficiently secreted to silkworm serum and was purified as oligomers, which showed immunoreactivity for anti-SARS-CoV-2 S2 antibody. By using the direct transfection of recombinant bacmid to silkworms, we achieved the efficient production of SARS-CoV-2 S protein as fetal bovine serum (FBS)-free system. The resultant purified S protein would be useful tools for the development of immunodetection kits, antigen for immunization for immunoglobulin production, and vaccines.


Assuntos
Bombyx/citologia , Bombyx/virologia , Nucleopoliedrovírus/genética , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Animais , Bombyx/enzimologia , Linhagem Celular , Clonagem Molecular , Furina/metabolismo , Nucleopoliedrovírus/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
10.
Mol Biotechnol ; 61(8): 622-630, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165966

RESUMO

Type IB DNA topoisomerases are enzymes to change the topological state of DNA molecules and are essential in studying replication, transcription, and recombination of nucleic acids in vitro. DNA topoisomerase IB from Vaccinia virus (vTopIB) is a 32 kDa, type I eukaryotic topoisomerase, which relaxed positively and negatively supercoiled DNAs without Mg2+ and ATP. Although vTopIB has been effectively produced in E. coli expression system, no studies remain available to explore an alternative platform to express recombinant vTopIB (rvTopIB) in a higher eukaryote, where the one can expect post-translational modifications that affect the activity of rvTopIB. Here in this study, rvTopIB with N-terminal tags was constructed and expressed in a silkworm-baculovirus expression vector system (silkworm-BEVS). We developed a simple two consecutive chromatography purification to obtain highly pure rvTopIB. The final yield of rvTopIB obtained from a baculovirus-infected silkworm larva was 83.25 µg. We also evaluated the activity and function of rvTopIB by the DNA relaxation activity assays using a negatively supercoiled pUC19 plasmid DNA as a substrate. With carefully assessing optimized conditions for the reaction buffer, we found that divalent ions, Mg2+, Mn2+, Ca2+, as well as ATP stimulate the DNA relaxation activity by rvTopIB. The functional and active form of rvTopIB, together with the yields of the protein we obtained, suggests that silkworm-BEVS would be a potential alternative platform to produce eukaryotic topoisomerases on an industrial scale.


Assuntos
DNA Topoisomerases Tipo I/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Vaccinia virus , Proteínas Virais/isolamento & purificação , Animais , Baculoviridae/genética , Bombyx/metabolismo , Bombyx/virologia , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Magnésio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vaccinia virus/enzimologia , Vaccinia virus/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...