Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6866, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891189

RESUMO

Mars lacks a global magnetic field, and instead possesses small-scale crustal magnetic fields, making its magnetic environment fundamentally different from intrinsic magnetospheres like those of Earth or Saturn. Here we report the discovery of magnetospheric ion drift patterns, typical of intrinsic magnetospheres, at Mars using measurements from Mars Atmosphere and Volatile EvolutioN mission. Specifically, we observe wedge-like dispersion structures of hydrogen ions exhibiting butterfly-shaped distributions (pitch angle peaks at 22.5°-45° and 135°-157.5°) within the Martian crustal fields, a feature previously observed only in planetary-scale intrinsic magnetospheres. These dispersed structures are the results of drift motions that fundamentally resemble those observed in intrinsic magnetospheres. Our findings indicate that the Martian magnetosphere embodies an intermediate case where both the unmagnetized and magnetized ion behaviors could be observed because of the wide range of strengths and spatial scales of the crustal magnetic fields around Mars.

2.
Nat Commun ; 10(1): 257, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651535

RESUMO

Chorus waves, among the most intense electromagnetic emissions in the Earth's magnetosphere, magnetized planets, and laboratory plasmas, play an important role in the acceleration and loss of energetic electrons in the plasma universe through resonant interactions with electrons. However, the spatial evolution of the electron resonant interactions with electromagnetic waves remains poorly understood owing to imaging difficulties. Here we provide a compelling visualization of chorus element wave-particle interactions in the Earth's magnetosphere. Through in-situ measurements of chorus waveforms with the Arase satellite and transient auroral flashes from electron precipitation events as detected by 100-Hz video sampling from the ground, Earth's aurora becomes a display for the resonant interactions. Our observations capture an asymmetric spatial development, correlated strongly with the amplitude variation of discrete chorus elements. This finding is not theoretically predicted but helps in understanding the rapid scattering processes of energetic electrons near the Earth and other magnetized planets.

3.
Earth Planets Space ; 68(1): 195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003792

RESUMO

The astronomical diaries from Babylonia (ADB) are excellent sources of information of natural phenomena, including astronomical ones, in pre-Christ era because it contains the record of highly continuous and systematic observations. In this article, we present results of a survey of aurora-like phenomena in ADB, spanning from BCE 652 to BCE 61. We have found nine records of aurora-like phenomena. Philological and scientific examinations suggest that five of them can be considered as likely candidate for aurora observations. They provide unique information about the solar and aurora activities in the first millennium BCE. Graphical abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...