RESUMO
This study was conducted in an attempt to quantify the impact of N load on splanchnic tissues metabolism of sheep. The trial was conducted with four male sheep (45 ± 2.5 kg body weight (BW)) surgically implanted with chronic indwelling catheters into the portal, hepatic and mesenteric veins. Blood flow and metabolic flux through portal-drained viscera (PDV), liver and total splanchnic tissues (ST) were measured daily following a 4 × 4 Latin Square experimental design, where sheep were continually infused into the mesenteric vein with a physiological saline (0.15 m NaCl) solution during 90 min followed by the infusion, during more 120 min, of either solution: physiological saline (control), 0.250 mNH4 HCO3 , 0.250 m L-alanine or 0.125 m L-arginine, all of them infused at a rate of 1.5 ml/min to provide 375 µmol N/min. During the treatment infusion period, the net removal of ammonia N and the net production of urea N by liver were higher (p < .05) in NH4 HCO3 infused sheep. Based on oxygen consumption, and on average of all treatments, the heat produced by liver and ST was on average 6 and 14 kcal/kg BW representing 16% and 38% of the metabolizable energy intake respectively. Linear relationships between variables indicated that gluconeogenesis and ureagenesis occurred concomitantly and both processes accounted for approximately 50% of total liver energy expenditure, two-thirds of it associated with gluconeogenesis. The results of the current study did not present clear evidence of the expected energy costs associated with ammonia N, alanine or arginine metabolism by liver. However, they indicated that gluconeogenesis is on average a more energy expensive process than ureagenesis.