Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 12(4): e12137, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35474731

RESUMO

Background: Indoor allergens (i.e. from mite, cat and dog) are carried by airborne particulate matter. Thus, removal of particles would reduce allergen exposure. This work aims to assess the performance of air filtration on particulate matter and thus allergen removal in 22 bedrooms. Methods: Indoor air was sampled (with and without air filtration) with a cascade impactor and allergens were measured using enzyme-linked immunosorbent assay (ELISA). Particulate matter (including ultrafine particles) was also monitored. Results: The median of allergen reduction was 75.2% for Der f 1 (p < 0.001, n = 20), 65.5% for Der p 1 (p = 0.066, n = 4), 76.6% for Fel d 1 (p < 0.01, n = 21) and 89.3% for Can f 1 (p < 0.01, n = 10). For size fractions, reductions were statistically significant for Der f 1 (all p < 0.001), Can f 1 (PM>10 and PM2.5-10, p < 0.01) and Fel d 1 (PM2.5-10, p < 0.01), but not for Der p 1 (all p > 0.05). PM was reduced in all fractions (p < 0.001). The allergens were found in all particle size fractions, higher mite allergens in the PM>10 and for pet allergens in the PM2.5-10. Conclusions: Air filtration was effective in removing mites, cat and dog allergens and also particulate matter from ambient indoor air, offering a fast and simple solution to mitigate allergen exposome.

2.
Clin Transl Allergy ; 4: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26085923

RESUMO

Mountain and maritime climate therapy takes advantage of specific climatic conditions to treat chronic allergic diseases. It was the aim of the study to investigate effects of a 5 day sojourn on atopic diseases at the highest German mountain. In this pilot study 18 patients with grass pollen-induced rhinoconjunctivitis, atopic ezcema or asthma and 11 non-allergic controls were included. Skin physiology parameters, changes of the respiratory and nasal functions, subjective symptoms and blood parameters were measured during a 5-day observation period in the Environmental Research Station Schneefernerhaus (UFS) at the moderate altitude mountain region (Zugspitze; 2650 m alt.) compared to a low altitude area (Munich; 519 m alt.). Several of the skin physiology parameters changed significantly during the observation period (decrease of skin hydration, increase of skin smoothness, skin roughness, skin scaliness and pH-value). In patients with atopic eczema, the SCORAD (Severity Scoring of Atopic Dermatitis) and the scores of the DIELH (Deutsches Instrument zur Erfassung der Lebensqualität bei Hauterkrankungen) did not change significantly. Histamine induced itch decreased significantly. Parameters of nasal function did not change significantly. Several lung parameters showed a slight, but statistically significant improvement (forced expiratory volume in one second/volume capacity [FEV1/VC], peak expiratory flow [PEF], maximum expiratory flow at 50% of vital capacity [MEF 50], maximal mid-expiratory flow between 25% and 75% of vital capacity [MMFEF 25/75]), whereas the vital capacity (VC) decreased significantly. ECP (eosinophil cationic protein) in the serum and parameters of blood count changed significantly. These results show that the benefit of a moderate altitude mountain climate sojourn over a period of 5 days differs in depending on the atopic disease. Especially asthma parameters and itching of the skin improved. It would be interesting to assess the parameters during longer observation periods in alpine climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...