Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 39: 101780, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39044767

RESUMO

Background: Colon carcinoma poses a significant health challenge globally, particularly in developed nations where sedentary lifestyles, poor dietary choices, and genetic factors play a crucial role in its prevalence. Chemotherapy, the primary treatment method, carries severe side effects that can jeopardize patients' lives. Herbal extracts such as Ocimum Basillicum extract have shown effectiveness against cancer cells. Additionally, nanoparticles can significantly enhance drug delivery efficacy in these scenarios. Aim: This article aims to investigate the impact of copper nanoparticles coated with Ocimum Bassilicum at chemoradiotherapy of Colon Carcinoma to hopefully create new treatment options with fewer side effects for patients. Methodology: CuO bio-NPs were produced by the addition of 15 mL of extract dropwise to 80 mL of a 5 mM Cu (OAc)2 aqueous solution, which was then refluxed for 2 h at 100 °C. The mixture gradually became darker brown in color as a result of the heating procedure. The production of CuO NPs and the hydrogen-donating activity of antioxidant phenols within the plant are signaled by surface plasmon resonance excitation, which is the cause of this. In the cell culture, LS174t colon cancer cells were treated with OB extract, CuNPs, and OB-coated CuNPs with and without different radiation levels in order to assess cell viability, through the MTT assay, and the pro-apoptotic BAX and anti-apoptotic BCL2 expressions, through qPCR assay. Results: The results demonstrate a decrease in cell viability and the expression of BCL2 and an increase in the expression of BAX especially when treated with OB-coated CuNPs and even furthermore when paired with radiation therapy. Conclusions: After doing the clinical trial studies, the recent nanoparticles can be used for the treatment of Colorectal carcinoma.

2.
Heliyon ; 10(7): e28343, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560153

RESUMO

Current methods of colon cancer treatment, especially chemotherapy, require new treatment methods due to adverse side effects. One important area of interest in recent years is the use of nanoparticles as drug delivery vehicles since several studies have revealed that they can improve the target specificity of the treatment thus lowering the dosage of the drugs while preserving the effectiveness of the treatment thus reducing the side effects. The use of traditional medicine has also been a favorite topic of interest in recent years in medical research, especially cancer research. In this research work, the green synthesis of Fe nanoparticles was carried out using Mentha spicata extract and the synthesized nanoparticles were identified using FT-IR, XRD, FE-SEM and EDS techniques. Then the effect of Mentha spicata, Fe nanoparticles, and Mentha spicata -loaded Fe nanoparticles on LS174t colon cancer cells, and our result concluded that all three, especially Mentha spicata -loaded Fe nanoparticles, have great cytotoxic effects against LS174t cells, and exposure to radiotherapy just further intensified these results. The in vitro condition revealed alterations in the expression of pro-apoptotic BAX and anti-apoptotic Bcl2, suggesting a pro-apoptotic effect from all three components, particularly the Mentha spicata-loaded Fe nanoparticles. After further clinical trials, these nanoparticles can be used to treat colon cancer.

3.
Biosensors (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290911

RESUMO

For the first time, a novel aptamer was designed and utilized for the selective detection of rivaroxaban (RIV) using the integration of bioinformatics with biosensing technology. The selected aptamer with the sequence 5'-TAG GGA AGA GAA GGA CAT ATG ATG ACT CAC AAC TGG ACG AAC GTA CTT ATC CCC CCC AAT CAC TAG TGA ATT-3' displayed a high binding affinity to RIV and had an efficient ability to discriminate RIV from similar molecular structures. A novel label-free electrochemical aptasensor was designed and fabricated through the conjugation of a thiolated aptamer with Au nanoparticles (Au-NPs). Then, the aptasensor was successfully applied for the quantitative determination of RIV in human plasma and exhaled breath condensate (EBC) samples with limits of detection (LODs) of 14.08 and 6.03 nM, respectively. These valuable results provide ample evidence of the green electrogeneration of AuNPs on the surface of electrodes and their interaction with loaded aptamers (based on Au-S binding) towards the sensitive and selective monitoring of RIV in human plasma and EBC samples. This bio-assay is an alternative approach for the clinical analysis of RIV and has improved specificity and affinity. As far as we know, this is the first time that an electrochemical aptasensor has been verified for the recognition of RIV and that allows for the easy, fast, and precise screening of RIV in biological samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Ouro/química , Aptâmeros de Nucleotídeos/química , Rivaroxabana , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA