Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928034

RESUMO

This study investigated the efficiency of hydrochar derived from hydrothermal fulvification of wheat straw in adsorbing malachite green (MG) dye. The characterizations of the hydrochar samples were determined using various analytical techniques like SEM, EDX, FTIR, X-ray spectroscopy, BET surface area analysis, ICP-OES for the determination of inorganic elements, elemental analysis through ultimate analysis, and HPLC for the content of sugars, organic acids, and aromatics. Adsorption experiments demonstrated that hydrochar exhibited superior removal efficiency compared to feedstock. The removal efficiency of 91 % was obtained when a hydrochar dosage of 2 g L-1 was used for 20 mg L-1 of dye concentration in a period of 90 min. The results showed that the study data followed the Freundlich isotherms as well as the pseudo-second order kinetic model. Moreover, the determined activation energy of 7.9 kJ mol-1 indicated that the MG adsorption was a physical and endothermic process that increased at elevated temperatures. The study also employed an artificial neural network (ANN), a machine learning approach that achieved remarkable R2 (0.98 and 0.99) for training and validation dataset, indicating high accuracy in simulating MG adsorption by hydrochar. The model's sensitivity analysis demonstrated that the adsorbent dosage exerted the most substantial influence on the adsorption process, with MG concentration, pH, and time following in decreasing order of impact.

2.
J Environ Health Sci Eng ; 17(1): 479-492, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31297221

RESUMO

BACKGROUND: Azo dyes represent the most commonly used group of dyes in the textile industry. These organic dyes are mainly resistant to biodegradation and may exhibit toxic and carcinogenic properties. The purpose of this study was to investigate the effects of doping zinc oxide (ZnO) nanoparticles (NPs) with transition metals (silver, manganese, and copper) on the photocatalytic efficiency of ZnO NPs in the removal of Direct Blue 15 dye from aqueous environments under ultraviolet (UV) radiation and visible light irradiation. METHODS: One or two metals were used for doping the NPs. In total, seven types of undoped and transition metal-doped NPs were synthesized using the thermal solvent method with ZnO precursors and transition metal salts. The characteristics of the synthesized NPs were determined based on the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and zeta potential measurements. RESULTS: The produced ZnO NPs did not exhibit any particular photocatalytic activities under UV radiation and visible light irradiation. The highest removal efficiency under UV radiation was about 74% in the presence of silver-doped ZnO NPs, while the maximum efficiency under visible light was 70% in the presence of copper-doped ZnO NPs. The lowest removal efficiency was related to pure ZnO, which was 18.4% and 14.6% under UV and visible light irradiation, respectively. Although the efficiency of dye removal under visible light was not high compared to UV radiation, this efficiency was noteworthy in terms of both practical and economic aspects since it was achieved without the presence of ultraviolet radiation. CONCLUSIONS: The synthesis of transition metal-doped ZnO nanophotocatalysts (with one or two metals) under UV radiation or visible light irradiation could be used as an efficient and promising technology for the photocatalytic removal of Direct Blue 15 dye from aqueous environments.

3.
Int J Appl Basic Med Res ; 4(2): 111-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25143887

RESUMO

BACKGROUND: Uropathogenic Escherichia coli (UPEC) can cause urinary tract infection (UTI). To prevent urine flow lavage, UPEC has acquired several virulence factors called adhesins. These adhesins are expressed and controlled by different genes. AIM: This study was aimed to determine some of the most important genes that control virulence factors of UPEC (pyelonephritis associated pili [pap], S fimbrial adhesion [sfa] and A fimbrial adhesion [afa] genes), which code for adhesins and phenotypic factors. MATERIALS AND METHODS: In total, 205 UPEC isolates from in- and out-patients with UTI were obtained. Polymerase chain reaction was used for gene amplification. One drop of bacterial suspension, one of red blood cells and one of peripheral blood smear were mixed for hemagglutination (HA). Formation of a clump was considered to be positive. Bacteria were grown on blood agar to determine hemolysis. Surface hydrophobicity was determined using the SAT test. RESULT: Frequencies of pap, afa and sfa were 42 (20.5%), 17 (8.3%) and 44 (21.5%), respectively. Frequencies of HA, hemolysis and hydrophobicity were 138 (67.3%), 56 (27.3%) and 39 (19%), respectively. Among HA-positive bacteria, 103 (74.6%) were mannose resistant. Our results highlight higher frequency of HA than that of other virulence factors, indicating a crucial role of this virulence factor in UPEC. DISCUSSION: We concluded that major differences exist in the prevalence of virulence factors among different UPEC isolated from different countries. The association observed between pathogenicity and virulence factors may promote UPEC survival and growth within the urinary tract. Detecting these genes as the primary controllers of UPEC virulence factors may aid in better management of related infections.

4.
Pak J Biol Sci ; 10(14): 2348-52, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19070155

RESUMO

Adsorption studies for Carbolic Acid (phenol) removal from aqueous solution on commercial powdered activated carbon were carried out. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial phenol concentration, adsorbent dose and pH. Adsorption equilibrium was reached within 6 h for phenolic concentrations 100-500 mg L(-1). The adsorption of phenol increases with increasing initial phenol concentration and decreases with increasing the solution pH value. The equilibrium data in aqueous solutions was well represented by the Langmuir and Freundlich isotherm models. Kinetics of adsorption followed a first order rate equation. The studies showed that the palm seed coat carbon can be used as an efficient adsorbent material for the removal of phenolics from water and wastewater.


Assuntos
Carbono/química , Fenol/química , Pós , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Soluções , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA