Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 304: 120726, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750202

RESUMO

AIMS: Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI. MATERIALS AND METHODS: The expression of selected four validated miRNA-target pairs (miRNA223-3p, miRNA155-5p, miRNA145-5p, and miRNA124-3p) was examined at different time points (6 h, 12 h, 1 day, 3 day and 7 day) after SCI. Further, using GFAP-specific kelch-like ECH-associated protein 1 deletion (Keap1-/-) and whole-body Nrf2-/- knockout mice, we investigated the potential interplay between each miRNA and the Keap1/Nrf2 signaling system. KEY FINDINGS: The expression of all miRNAs except miRNA155-5p significantly increased 24 h after SCI and decreased after 7 days. Interestingly, Keap1-/- mice only showed significant increase in the miRNA145-5p after 24 h SCI compared to the WT group. In addition, Keap1-/- mice showed significant decrease in CXCL10/12 (CXCL12 increased in Nrf2-/- mice), and TNF-α, and an increase in Mn-SOD and NQO-1 (Mn-SOD and NQO-1 decreased in Nrf2-/- mice) compared to WT mice. SIGNIFICANCE: Our results suggest that astrocytic hyperactivation of Nrf2 exert neuroprotective effects at least in part through the upregulation of miRNA145-5p, a negative regulator of astrocyte proliferation, and induction of ARE in early phase of SCI. Further studies are needed to investigate the potential interplay between Nrf2 and miRNA145-5p in neuroinflammatory condition.


Assuntos
MicroRNAs , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Animais , Elementos de Resposta Antioxidante/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo
2.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008586

RESUMO

Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area. Understanding the underlying molecular mechanism in the peri-infarct region is crucial for developing promising therapeutics. Utilizing a tMCAo (transient Middle Cerebral Artery occlusion) model in rats, we studied the expression levels of the miRNAs (miR) 223-3p, 155-5p, 3473, and 448-5p in the cortex, amygdala, thalamus, and hippocampus of both the ipsi- and contralateral hemispheres. Additionally, the levels in the blood serum, spleen, and liver and the expression of their target genes, namely, Nlrp3, Socs1, Socs3, and Vegfa, were assessed. We observed an increase in all miRNAs on the ipsilateral side of the cerebral cortex in a time-dependent manner and increased miRNAs levels (miR-223-3p, miR-3473, and miR-448-5p) in the contralateral hemisphere after 72 h. Besides the cerebral cortex, the amygdala presented increased expression levels, whereas the thalamus and hippocampus showed no alterations. Different levels of the investigated miRNAs were detected in blood serum, liver, and spleen. The gene targets were altered not only in the peri-infarct area of the cortex but selectively increased in the investigated non-affected brain regions along with the spleen and liver during the reperfusion time up to 72 h. Our results suggest a supra-regional influence of miRNAs following ischemic stroke, which should be studied to further identify whether miRNAs are transported or locally upregulated.


Assuntos
Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Soro/metabolismo , Baço/metabolismo , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...