Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 1): 113789, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798272

RESUMO

Nowadays, the removal of pharmaceutical contaminants from water resources and wastewater is of great importance due to environmental and health issues. Over the decades, various methods have been reported to remove pollutants from wastewater. Among the developed methods, advanced oxidation processes (AOPs) have received significant attention from researchers. In this study, we report the one-pot synthesis of graphene hydrogel-metal (GH-M, M: Co, Ni, Cu) nanocomposites via the combination of polyol and hydrothermal methods. The structure of the resulting nanocomposites was examined by transmission electron microscopy (TEM), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy methods. Afterward, as-prepared GH-Cu, GH-Co, and GH-Ni nanocomposites were used to prepare cathodes for the electro-Fenton (EF) process to remove rifampicin (RIF) from polluted water. The effect of operational parameters, including current density (mA/cm2), initial pH, initial RIF concentration (mg/L), and process time (min) was investigated via response surface methodology (RSM). The optimal values for current density, pH, initial RIF concentration, and process time using GH-Ni as cathode were 30 mA/cm2, 5, 30 mg/L, and 90 min, respectively. The results at optimal values showed that the maximum RIF removal efficiency for GH-Cu, GH-Co, and GH-Ni cathodes was 90.47, 92.60, and 93.69%, respectively. Brunauer Emmett Teller (BET), atomic force microscopy (AFM), energy-dispersive X-ray (EDX), and cyclic voltammetry (CV) analyses were performed to investigate the performance of the cathodes for the RIF removal. Finally, total organic carbon (TOC), gas chromatography-mass spectrometry (GC-MS), and atomic absorption spectroscopy (AAS) analyses were performed for further investigation of the RIF removal from polluted water. The results claimed that one-pot synthesized GH-M cathodes can effectively remove RIF from polluted water through EF process.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Eletrodos , Hidrogéis , Rifampina , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Água
2.
Chemosphere ; 296: 134007, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181426

RESUMO

Nowadays, the entry of organic compounds into water resources is one of the leading global concerns due to the lack of water resources and rapid population growth. In this research, anodic oxidation (AO) method was used to remove 5-fluorouracil (5-FU) from aqueous solutions via Ni/RuO2 and Ti/IrO2-TiO2-RuO2 electrodes as cathode and anode, respectively. For this purpose, the characterization analysis of the electrodes, including X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and atomic force microscopy were performed. The electrochemical performance of the anode was investigated via cyclic voltammetry analysis. Then, the effect of operational variables, including applied current (mA), initial pH of the solution, initial 5-FU concentration (mg/L), and process time (min) on the 5-FU removal efficiency under the AO process was evaluated via artificial neural network (ANN) modeling. The results revealed that the maximum 5-FU removal efficiency was 96.96%. The applied current intensity, pH, initial 5-FU concentration, and process time were 300 mA, 5, 20 mg/L, and 140 min, respectively. Moreover, the investigation of 5-FU removal by-products and mineralization efficiency of the AO process was carried out via gas chromatography-mass spectrometry and total organic carbon analysis, respectively. The total organic carbon mineralization efficiency was 84.80% after 6 h of reaction time. The reusability and stability of the Ti/IrO2-TiO2-RuO2 anode on 5-FU removal efficiency were measured and showed an approximately 5% decay in 5-FU removal efficiency after eight consecutive runs. The overall results and analysis confirmed this method is capable of removing 5-FU through Ti/IrO2-TiO2-RuO2 anode and Ni/RuO2 cathode from aqueous medium.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carbono , Eletrodos , Fluoruracila/análise , Oxirredução , Óxidos/química , Preparações Farmacêuticas , Titânio/química , Águas Residuárias/química , Água/análise , Poluentes Químicos da Água/análise
3.
Environ Res ; 207: 112641, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979125

RESUMO

In this work, the fluoxetine (FLX) removal has been studied via the anodic oxidation (AO) process. Anode electrodes were Ti/RuO2, Ti/RuO2-IrO2, and Ti/RuO2-IrO2-SnO2, and cathode electrodes were graphite and carbon nanotubes (CNTs). The performances of electrodes were compared in terms of FLX removal efficiency. As a result, Ti/RuO2-IrO2-SnO2 and CNTs were the optimal anode and cathode, respectively. The properties of the optimal electrodes were investigated using scanning electron microscopy, atomic force microscopy and X-ray diffraction spectroscopy. Cyclic voltammetry analysis was performed to study the electrochemical behavior of electrodes. The effect of current intensity (mA), initial pH, initial FLX concentration (mg/L) and process time (min) on the FLX removal efficiency was investigated and the response surface methodology was applied for the optimization of the AO process. The results showed that at current intensity, pH, initial FLX concentration and process time of 500 mA, 6, 25 mg/L and 160 min, maximum FLX removal efficiency was observed, which was 96.25%. Gas Chromatography-Mass Spectrometry (GC-MS), and total organic carbon (TOC) analysis was determined to evaluate the intermediates, and mineralization efficiency. The TOC removal efficiency was reached 81.51% after 6 h under optimal experimental conditions, indicating the successful removal of the FLX.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Eletrodos , Fluoxetina , Oxirredução , Óxidos/química , Titânio/química , Água , Poluentes Químicos da Água/análise
4.
Chemosphere ; 273: 128581, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33082000

RESUMO

In the present study, heterogeneous electro-Fenton (EF) process was applied to remove the sulfasalazine (SU) pharmaceutical from aqueous solutions. In the first part, 3D graphene loaded with Fe@Fe2O3 core-shell nanowires (Fe@Fe2O3/3D-GO) was used as a cathode electrode in the EF process. Graphene oxide (GO) was synthesized for the synthesis of 3D graphene nanocomposites using the improved Hummers' method and subsequently 3D graphene synthesized by the hydrothermal method using glycine. Finally, Fe@Fe2O3/3D-GO composite was synthesized and its properties were assessed by Scanning electron microscopy, Atomic force microscopy, Brunauer-Emmett-Teller, Fourier-transform infrared spectroscopy and X-ray diffraction methods. Then, the cathode electrode was prepared using the resulting composite and its performance was evaluated using Cyclic Voltammetry analysis. In the final part of this work, the Fe@Fe2O3/3D-GO electrode was used as the cathode electrode in the heterogeneous EF process to remove SU from aqueous solutions. The effect of operating parameters such as applied current (mA), initial pH of solution, initial pharmaceutical concentration (mg L-1) and process time (min) on pharmaceutical removal efficiency under heterogeneous EF process was investigated by response surface methodology. The results showed that the optimum values for applied current, pH, initial pharmaceutical concentration and electrolysis time were respectively 300 mA, 7, 30 mg L-1 and 100 min, resulting 99.60% of SU removal. Finally, the intermediates of SU degradation were determined by Gas chromatography-mass spectrometry analysis and the amount of mineralization was determined by total organic carbon analysis. About 5.2% drop in the SU removal efficiency was observed within 8 operational runs.


Assuntos
Grafite , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Sulfassalazina
5.
J Environ Manage ; 254: 109802, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731027

RESUMO

In the present study, the potential of Azolla filiculoides (A. filiculoides) was first investigated for degradation of Phenazopyridine (PhP), an analgesic drug. The effects of main variables such as initial pharmaceutical concentration, amount of plant, and pH were studied on the efficiency of the biological process. It was observed that A. filiculoides was able to remove pharmaceuticals from contaminated water up to 85.90% during 48 h. Then, the electro-Fenton (EF) method was applied for further removal of PhP yielding a removal rate of about 98.72% under optimum conditions during 2 h. The effects of variables including the current, amount of catalyst, and pH were also studied in this phase. Also, the probability of adsorption was investigated during this step. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were performed for the used magnetite nanoparticles, total organic carbon (TOC) were performed to investigate PhP removal efficiency during the reaction time and Gas chromatography-mass spectrometry (GC-MS) were performed to analyze degradation byproducts of PhP. Based on the results, it was found that a combination of these bioremediation and electrochemical removal steps were capable of PhP removal from contaminated water. Therefore, this approach may be effective for phytoremediation of pharmaceutical-contaminated aquatic ecosystems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ecossistema , Peróxido de Hidrogênio , Ferro , Oxirredução , Fenazopiridina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...