Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522391

RESUMO

In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.


Assuntos
Escherichia coli , Naftoquinonas , Staphylococcus aureus , Simulação de Acoplamento Molecular , Antibacterianos/química , Ciprofloxacina/farmacologia , Bactérias , Inibidores da Topoisomerase II/farmacologia , Testes de Sensibilidade Microbiana
2.
Bioorg Chem ; 145: 107221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387398

RESUMO

Despite significant developments in therapeutic strategies, Diabetes Mellitus remains an increasing concern, leading to various complications, e.g., cataracts, neuropathy, retinopathy, nephropathy, and several cardiovascular diseases. The polyol pathway, which involves Aldose reductase (AR) as a critical enzyme, has been focused on by many researchers as a target for intervention. On the other hand, spiroindoline-based compounds possess remarkable biological properties. This guided us to synthesize novel spiroindoline oxadiazolyl-based acetate derivatives and investigate their biological activities. The synthesized molecules' structures were confirmed herein, using IR, NMR (1H and 13C), and Mass spectroscopy. All compounds were potent inhibitors with KI constants spanning from 0.186 ± 0.020 µM to 0.662 ± 0.042 µM versus AR and appeared as better inhibitors than the clinically used drug, Epalrestat (EPR, KI: 0.841 ± 0.051 µM). Besides its remarkable inhibitory profile compared to EPR, compound 6k (KI: 0.186 ± 0.020 µM) was also determined to have an unusual pharmacokinetic profile. The results showed that 6k had less cytotoxic effect on normal mouse fibroblast (L929) cells (IC50 of 569.58 ± 0.80 µM) and reduced the viability of human breast adenocarcinoma (MCF-7) cells (IC50 of 110.87 ± 0.42 µM) more than the reference drug Doxorubicin (IC50s of 98.26 ± 0.45 µM and 158.49 ± 2.73 µM, respectively), thus exhibiting more potent anticancer activity. Moreover, molecular dynamic simulations for 200 ns were conducted to predict the docked complex's stability and reveal significant amino acid residues that 6k interacts with throughout the simulation.


Assuntos
Aldeído Redutase , Diabetes Mellitus , Camundongos , Animais , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Dinâmica Molecular
3.
Arch Pharm (Weinheim) ; 357(2): e2300497, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972283

RESUMO

In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.


Assuntos
Flavonas , Metotrexato , Tiorredoxina Dissulfeto Redutase , Ratos , Animais , Metotrexato/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa Transferase/metabolismo , Via de Pentose Fosfato , Relação Estrutura-Atividade , Glutationa Redutase/metabolismo , Peso Corporal
4.
Bioorg Med Chem ; 95: 117510, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926047

RESUMO

Chronic Inflammation is associated with various types of diseases that involves pro-inflammatory cytokines like IL-6 and TNF-α. High costs and serious side effects of available anti-inflammatory/immunomodulatory drugs led us to design new compounds with promising anti-inflammatory activities. Many drugs and biologically important compounds involve naphthoquinone and thiazole moieties in their core structures. Thereby, here we report the synthesis, characterization and anti-inflammatory activities of new naphthoquinone thiazole hybrids by reaction of naphthoquinone acyl thioureas with various α-bromoketone derivatives. The position of NO2 group in one of the phenyl rings of naphthoquinone thiazole hybrids was changed while different substituents were introduced at the para position of the second phenyl ring. All compounds were tested for potential immunomodulatory effect. No inflammatory cytokines were observed in the absence of LPS stimulant. On the other hand, they had promising anti-inflammatory immunomodulatory activities by being able to decrease the production of the pro-inflammatory cytokines (TNF-α and IL-6) in the LPS-stimulated cells. In an effort to find the possible mechanism of action, several enzymes involved in signalling pathways that play critical roles in inflammatory responses were screened in silico. Subsequent to inverse molecular docking approach, PI3K was predicted be the potential target. The docked complexes of the most potent compounds 5g and 5i were subjected to molecular dynamics simulation to assess the binding stability of the igands with the putative target. Acid dissociation constants (pKa) of the products were also determined potentiometrically.


Assuntos
Naftoquinonas , Fator de Necrose Tumoral alfa , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Tiazóis , Interleucina-6 , Naftoquinonas/farmacologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/química , Citocinas/metabolismo
5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004473

RESUMO

Tumor necrosis factor receptor-associated factors (TRAFs) are a protein family with a wide variety of roles and binding partners. Among them, TRAF6, a ubiquitin ligase, possesses unique receptor binding specificity and shows diverse functions in immune system regulation, cellular signaling, central nervous system, and tumor formation. TRAF6 consists of an N-terminal Really Interesting New Gene (RING) domain, multiple zinc fingers, and a C-terminal TRAF domain. TRAF6 is an important therapeutic target for various disorders and structural studies of this protein are crucial for the development of next-generation therapeutics. Here, we presented a TRAF6 N-terminal structure determined at the Turkish light source "Turkish DeLight" to be 3.2 Å resolution at cryogenic temperature (PDB ID: 8HZ2). This structure offers insight into the domain organization and zinc-binding, which are critical for protein function. Since the RING domain and the zinc fingers are key targets for TRAF6 therapeutics, structural insights are crucial for future research. Separately, we rationally designed numerous new compounds and performed molecular docking studies using this template (PDB ID:8HZ2). According to the results, 10 new compounds formed key interactions with essential residues and zinc ion in the N-terminal region of TRAF6. Molecular dynamic (MD) simulations were performed for 300 ns to evaluate the stability of three docked complexes (compounds 256, 322, and 489). Compounds 256 and 489 was found to possess favorable bindings with TRAF6. These new compounds also showed moderate to good pharmacokinetic profiles, making them potential future drug candidates as TRAF6 inhibitors.

6.
J Biomol Struct Dyn ; : 1-16, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37545162

RESUMO

The inhibition of Phosphodiesterase 5A (PDEA5) has the potential to modulate pulmonary arterial hypertension and cardiovascular diseases. Exploring the cross-reactivity of clinically available PDE5A therapeutics with PDE6A is intriguing in order to develop highly selective PDE5A compounds in cardiovascular arena. In the current study, we leveraged e-pharmacophore based screening and molecular dynamics (MD) simulation to discover more selective PDE5A inhibitors as compared to the PDE6A catalytic domain. e-Pharmacophore based mapping of the CoCoCo database (7 million compounds: ∼ 150,000,000 conformers), followed by Glide docking, MM-GBSA, and protein-inhibitor interaction analysis, revealed 1536427, 4832637 and 6788240 as stable, tight binders of PDE5A instead of PDE6A. These compounds adhere to Lipinski Rule of Five (RO5) and ADME/Tox criteria. MD simulations analysis showed that 1536427 stays stable and tightly binds to catalytic (Q-region) core of PDE5A catalytic domain as compared to sildenafil. Pronounced inward motions of the hydrophobic (H-region) and Lid region indicate the closure of PDE5A-1536427 complex, whereas this region in PDE6A-1536427 is more open. Significant differences in the interactions, stability, and dynamics of 1536427 were observed in the catalytic domain of PDE6A, demonstrating less specificity for PDE6A in comparison to PDE5A. After lead optimization and therapeutic interventions, this proposed lead may emerge as a promising PDE5A selective inhibitor.Communicated by Ramaswamy H. Sarma.

7.
Chem Biol Interact ; 383: 110655, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37573926

RESUMO

In this study, a total of 12 coumarin-chalcone derivatives, 6 of which are original were synthesized. The structures of the newly synthesized compounds were elucidated by 1H NMR, 13C NMR, IR, and elemental analysis methods (7g-7l). The antioxidant potencies measured by using CUPRAC method (Trolox equivalent total antioxidant capacity) were as follows: 7j > 7i > 7c > 7d > 7k > 7l > 7f > 7h > 7e > 7g > 7a > 7b. Furthermore, the compounds were evaluated against human carbonic anhydrases I, II, acetylcholinesterase and α-glycosidase enzymes. Compounds 7c, 7e, 7g, 7i, 7j and 7l showed promising human carbonic anhydrase I inhibition compared to the standard Acetazolamide (Ki: 16.64 ± 4.72-49.82 ± 5.82 nM vs Ki: 57.64 ± 5.41 nM). In addition, all compounds exhibited strong inhibition against acetylcholinesterase and α-glycosidase. Ki values were between 2.39 ± 0.97-9.35 ± 3.95 nM (Tacrine Ki: 13.78 ± 4.36 nM) for acetylcholinesterase, and 14.49 ± 8.51-75.67 ± 26.38 nM (Acarbose Ki: 12600 ± 78.00 nM) for α-glycosidase. Binding of 7g was predicted using molecular docking and stability of the complex was confirmed with molecular dynamics simulations which shed a light on the observed activity against acetylcholinesterase. Finally, cyclic voltammetry was also used for the electrochemical characterization of the synthesized compounds.


Assuntos
Chalcona , Cumarínicos , Humanos , Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica , Chalcona/farmacologia , Inibidores da Colinesterase/química , Glicosídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Cumarínicos/farmacologia
8.
J Biomol Struct Dyn ; : 1-19, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540185

RESUMO

In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.

9.
ACS Omega ; 8(22): 20056-20065, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305321

RESUMO

In an endeavor to identify small molecules for the management of non-small-cell lung carcinoma, 10 new hydrazone derivatives (3a-j) were synthesized. MTT test was conducted to examine their cytotoxic activities against human lung adenocarcinoma (A549) and mouse embryonic fibroblast (L929) cells. Compounds 3a, 3e, 3g, and 3i were determined as selective antitumor agents on A549 cell line. Further studies were conducted to figure out their mode of action. Compounds 3a and 3g markedly induced apoptosis in A549 cells. However, both compounds did not show any significant inhibitory effect on Akt. On the other hand, in vitro experiments suggest that compounds 3e and 3i are potential anti-NSCLC agents acting through Akt inhibition. Furthermore, molecular docking studies revealed a unique binding mode for compound 3i (the strongest Akt inhibitor in this series), which interacts with both hinge region and acidic pocket of Akt2. However, it is understood that compounds 3a and 3g exert their cytotoxic and apoptotic effects on A549 cells via different pathway(s).

10.
BMC Chem ; 17(1): 26, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964610

RESUMO

Computer-Aided Drug Design tools are now an indispensable part of drug discovery that have made key contributions to the development of drugs. In this editorial, I briefly provide an overview of CADD emphasizing its potential and invite authors from academia and the pharmaceutical and biotechnology sector to present their research in this collection.

11.
Drug Dev Res ; 84(2): 185-199, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36469421

RESUMO

In an attempt to identify potent antitumor agents for the fight against non-small cell lung cancer, new thiazolyl hydrazones (2a-n) were synthesized and examined for their in vitro cytotoxic effects on A549 human lung adenocarcinoma and L929 mouse embryonic fibroblast cells by means of the MTT assay. Furthermore, the effects of the most potent anticancer agents on apoptosis and Akt inhibition were investigated. 2-[2-((Isoquinolin-5-yl)methylene)hydrazinyl]-4-(4-methylsulfonylphenyl)thiazole (2k) (IC50 = 1.43 ± 0.12 µM) and 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]-4-(1,3-benzodioxol-5-yl)thiazole (2l) (IC50 = 1.75 ± 0.07 µM) displayed more pronounced anticancer activity than cisplatin (IC50 = 3.90 ± 0.10 µM) on A549 cell lines; 2-[2-((isoquinolin-5-yl)methylene)hydrazinyl]-4-(4-methoxyphenyl)thiazole (2j) (IC50 = 3.93 ± 0.06 µM) showed anticancer activity close to cisplatin. These compounds were found to induce apoptosis in A549 cells. Compound 2j (IC50 = 3.55 ± 0.64 µM) showed stronger Akt inhibitory activity than GSK690693 (IC50 = 4.93 ± 0.06 µM), while compounds 2k and 2l did not cause Akt inhibition at IC50 concentrations (1.43 and 1.75 µM, respectively). To comprehensively elucidate the binding pose of compound 2j and to provide a detailed understanding on the ligand' binding mechanism, induced-fit docking calculations were also conducted. Both in vitro and in silico studies suggest that compound 2j shows its cytotoxic and apoptotic effects on A549 cell lines via Akt inhibition. However, it is understood that compounds 2k and 2l exert their strong anticancer effects on A549 cells through different pathways.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-akt , Tiazóis/farmacologia , Tiazóis/química , Hidrazonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura Molecular , Linhagem Celular Tumoral
12.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235252

RESUMO

We describe azophenylindane based molecular motors (aphin-switches) which have two different rotamers of trans-configuration and four different rotamers of cis-configuration. The behaviors of these motors were investigated both experimentally and computationally. The conversion of aphin-switch does not yield single isomer but a mixture of these. Although the trans to cis conversion leads to the increase of the system entropy some of the cis-rotamers can directly convert to each other while others should convert via trans-configuration. The motion of aphin-switches resembles the work of a mixing machine with indane group serving as a base and phenol group serving as a beater. The aphin-switches presented herein may provide a basis for promising applications in advanced biological systems or particularly in cases where on demand disordering of molecular packing has value, such as lipid bilayers.


Assuntos
Indanos , Bicamadas Lipídicas , Isomerismo , Fenóis
13.
Bioorg Chem ; 124: 105822, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500503

RESUMO

The research in selective monoamine oxidases (MAO-A and MAO-B) inhibitors has been increased due to their therapeutic value for neurodegenerative diseases. In this study, 4-((2-(aryl)-4-oxoquinazolin-3(4H)-yl)amino)benzenesulfonamides were synthesized and their MAOs inhibition potentials were investigated applying in vitro fluorometric technique. The most potent compounds 7 and 8 against MAO-A had IC50 values of 0.058 ± 0.002 and 0.094 ± 0.003 µM, respectively, while the reference moclobemide had an IC50 value of 6.061 µM. Compounds 7 (>1724 times) and 8 (>1063 times) more selective and reversible inhibitors of MAO-A rather than MAO-B. Toxicity studies of 7 (IC50 = 210.23 µM) and 8 (IC50 = 259.27 µM) showed that compounds can be considered as non-toxic towards SH-SY5Y cell line at their effective concentrations against MAO-A. In silico docking simulations successfully explained the observed activities and also highlighted structural water molecules to play a key role in the ligand-enzyme interactions. Calculated molecular descriptors are also obeying Lipinski's rule of five and brain/blood partition coefficients, a critical parameter in neurodegenerative diseases. These reversible inhibitors can have considerable advantages compared to irreversible inhibitors which may possess serious pharmacological side effects.


Assuntos
Inibidores da Monoaminoxidase , Neuroblastoma , Antidepressivos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
14.
Int J Biol Macromol ; 199: 318-330, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35026221

RESUMO

Chitosan (Ch, a natural polymer) and kaolin (K, a natural mineral) composite (Ch-K) was produced with the help of two crosslinkers, epichlorohydrin and tripolyphosphate, and then moulded into uniform beads in tripolyphosphate solution. The synthesis was proved by the analyses involving FT-IR and SEM-EDX. The beads were then used as the natural adsorbent for removal of the auramine O (AO), a frequently-used industrial dye, in aqueous solutions. Adsorbent performance of the Ch-K composite for AO dye molecules was optimized: 500 mg L-1 at pH 7.5 at 25 °C. The Langmuir model found 0.118 mol kg-1 for the maximum adsorption capacity of the Ch-K and the D-R isotherm model showed that the nature of the adsorption process was physical. Kinetics of the adsorption could be explained by using both IPD (intraparticle diffusion) and PSO (pseudo second order) models. Thermodynamic parameters demonstrated that the behaviour of the adsorption was an endothermic and spontaneous. The activity of the composite adsorbent was recovered (88%) after the five sequential adsorption/desorption cycles. Supported by experimental findings, the results obtained from in silico modeling at M06-2X/6-31+G (d,p) level helped hypothesise a mechanism for the formation of the Ch-K composite, and shed some light onto the adsorption behaviour of AO dye by assuming several favourable intermolecular interactions.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Adsorção , Benzofenoneídio , Quitosana/química , Teoria da Densidade Funcional , Epicloroidrina/química , Concentração de Íons de Hidrogênio , Caulim , Cinética , Polifosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/química , Purificação da Água/métodos
15.
Bioorg Med Chem Lett ; 55: 128453, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801684

RESUMO

In this study, a series of bis- and tetrakis-1,2,3-triazole derivatives were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry in 73-95% yield. The bis- and tetrakis-1,2,3-triazoles exhibited significant DNA cleavage activity while the tetrakis-1,2,3-triazole analog 6g completely degraded the plasmid DNA. Molecular docking simulations suggest that compound 6g acts as minor groove binder of DNA by binding through several noncovalent interactions with base pairs. All bis- and tetrakis-1,2,3-triazole derivatives were screened for antibacterial activity against E. coli, B. cereus, S. aureus, P. aeruginosa, E. hirae, L. pneumophila subsp. pneumophila strains and antifungal activity against microfungus C. albicans and C. tropicalis strains. Compound 4d exhibited the best antibacterial activity among bis-1,2,3-triazoles against E. coli and E. hirae, while 6c exhibited the best antibacterial activity among tetrakis-1,2,3-triazoles against E. hirae. Furthermore, the best antifungal activity against C. albicans and C. tropicalis was reported for the compound 5, while 6d displayed the best antifungal activity against C. tropicalis and C. albicans. Reasonable iron chelating activities and DPPH radical scavenging abilities were found for some of the compounds. Finally, the acid dissociation constants (pKa) of the bis-1,2,3-triazoles were also determined with the help of HYPERQUAD program using the data obtained from potentiometric titrations. The reported data here concludes that the bis- and tetrakis-1,2,3-triazoles are important cores that should be considered for further development of especially new anticancer agents acting through the DNA cleavage activity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Candida/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Estrutura Molecular , Picratos/antagonistas & inibidores , Plasmídeos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
16.
Bioorg Chem ; 113: 105009, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052739

RESUMO

Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors.


Assuntos
Acetilcolinesterase/química , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/química , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Imidazóis/química , Tiadiazóis/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Anidrase Carbônica I/antagonistas & inibidores , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiadiazóis/metabolismo , Tiadiazóis/farmacologia
17.
Chem Biol Drug Des ; 98(2): 270-282, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021971

RESUMO

The purpose of this study was to synthesize imidazo[2,1-b]thiazole derivatives, characterize them with spectroscopical techniques and investigate for cytotoxic and apoptotic effects on glioma C6 cancer cell line. The in vitro anticancer activities were also investigated against focal adhesion kinase. Most of the compounds, particularly the derivatives carrying 3-oxo-1-tiya-4-azaspiro[4.5]decane moiety, exhibited higher or comparable activities in comparison with the reference drug, cisplatin. Compounds with methyl, propyl, phenyl moieties at the eighth and second position of the spirothiazolidinone ring showed high FAK inhibitory activities. In addition, molecular docking studies shed light on the binding modes of the synthesized compounds. The critical interactions with amino acid residues located in the active site were revealed. The results obtained from both biological assay data and computational results might provide insight into developing new inhibitors against focal adhesion kinase.


Assuntos
Antineoplásicos/síntese química , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Imidazóis/química , Inibidores de Proteínas Quinases/química , Tiazóis/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Eletricidade Estática , Relação Estrutura-Atividade , Tiazóis/metabolismo , Tiazóis/farmacologia
18.
Eur J Med Chem ; 217: 113351, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744685

RESUMO

In this research, rational design, synthesis, carbonic anhydrases (CAs) inhibitory effects, and cytotoxicities of the 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl)benzenesulfonamides 1-20 were reported. Compound 18 (Ki = 7.0 nM) was approximately 127 times more selective cancer-associated hCA IX inhibitor over hCA I, while compound 17 (Ki = 10.6 nM) was 47 times more selective inhibitor of hCA XI over hCA II compared to the acetazolamide. Compounds 11 (CC50 = 5.2 µM) and 20 (CC50 = 1.6 µM) showed comparative tumor-specificity (TS= > 38.5; >128.2) with doxorubicin (TS > 43.0) towards HSC-2 cancer cell line. Western blot analysis demonstrated that 11 induced slightly apoptosis whereas 20 did not induce detectable apoptosis. A preliminary analysis showed that some correlation of tumor-specificity of 1-20 with the chemical descriptors that reflect hydrophobic volume, dipole moment, lowest hydrophilic energy, and topological structure. Molecular docking simulations were applied to the synthesized ligands to elucidate the predicted binding mode and selectivity profiles towards hCA I, hCA II, and hCA IX.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
19.
J Biomol Struct Dyn ; 39(7): 2302-2317, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32299297

RESUMO

The need of circumventing life-threatening cardiovascular disorders (CVDs) and pulmonary hypertension (PHT) worldwide prompts researchers to develop effective therapeutic agents. Crucial role of cyclic nucleotide phosphodiesterase-5 (PDE5A) and cyclic nucleotide phosphodiesterase-3 (PDE3A) in cardiovascular signaling makes them potential drug targets for the treatment of CVDs and PHT. In this study, one-drug-multiple-target strategy has been employed to screen inhibitors exhibiting dual specificity through Phase-generated and statistically validated e-pharmacophore models of PDE5A and PDE3A. An extensive CoCoCo database of 7 million compounds with ∼150,000,000 conformations was virtually screened by sequential e-pharmacophore mapping followed by Lipinski Rule of Five (RO5) evaluation and hierarchical docking simulations. Finally, docked hits were subjected to rigorous MMGBSA analysis to estimate the relative spatial affinity of the drug-like compounds. The hits (354 and 366 ligands against PDE5A and PDE3A, respectively) were further optimized through 2D clustering followed by a comprehensive 2D and 3D interaction analysis. Five structurally diverse hits mapped equally well with the e-pharmacophore models and showed promising inhibitory interactions with conserved four catalytic features of PDE5A and PDE3A, thus exhibiting dual specificity. Proposed lead compounds exhibited the lowest MMGBSA binding energies and were found to be in agreement with Lipinski Rule of Five (RO5) and ADME/Tox criteria as compared to sildenafil. The proposed dual inhibitors could thus provide promising outcomes for the discovery of dual as well as multipotent drug like compounds after lead optimization and primary therapeutic interventions.


Assuntos
Doenças Cardiovasculares , Inibidores da Fosfodiesterase 3 , Doenças Cardiovasculares/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Inibidores da Fosfodiesterase 3/farmacologia
20.
Comput Struct Biotechnol J ; 18: 1625-1638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670503

RESUMO

Protein kinase Iα (PKGIα) is a pivotal cyclic guanosine monophosphate (cGMP) signalling protein. Major steps related to the structural plasticity of PKGIα have been inferred but the structural aspects of the auto-inhibition and multidomain tertiary organization of human PKGIα in active and inactive form are not clear. Here we combine computational comparative modelling, protein-protein docking and molecular dynamics (MD) simulations to investigate structural details of the repressed state of the catalytic domain of PKGIα. Exploration of the potential inhibitory conformation of the auto-inhibitory domain (AI) within the catalytic cleft reveals that the pseudo-substrate motif binds with residues of the glycine rich loop and substrate-binding lobe. Dynamic changes as a result of coupling of the catalytic and AI domains are also investigated. The three-dimensional homodimeric models of PKGIα in the active and inactive state indicate that PKGIα in its inactive-state attains a compact globular structure where cyclic nucleotide binding (CNB-A/B) domains are buried, whereas the catalytic domains are inaccessible with their substrate-binding pockets facing the N-terminal of CNB-A. Contrary to this, the active-state model of PKGIα shows an extended conformation where CNB-A/B domains are slightly rearranged and the catalytic domains of homodimer flanking the C-terminal with their substrate binding lobes free to entrap downstream proteins. These findings are consistent with previously reported static images of the multidomain organization of PKGIα. Structural insights pertaining to the conformational heterogeneity and auto-inhibition of PKGIα provided in this study may help to understand the dynamics-driven effective regulation of PKGIα.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...