Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(11): 4805-4813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862451

RESUMO

Combining different antimicrobial agents has emerged as a promising strategy to enhance efficacy and address resistance evolution. In this study, we investigated the synergistic antimicrobial effect of a cationic biobased polymer and the antimicrobial peptide (AMP) temporin L, with the goal of developing multifunctional electrospun fibers for potential biomedical applications, particularly in wound dressing. A clickable polymer with pendent alkyne groups was synthesized by using a biobased itaconic acid building block. Subsequently, the polymer was functionalized through click chemistry with thiazolium groups derived from vitamin B1 (PTTIQ), as well as a combination of thiazolium and AMP temporin L, resulting in a conjugate polymer-peptide (PTTIQ-AMP). The individual and combined effects of the cationic PTTIQ, Temporin L, and PTTIQ-AMP were evaluated against Gram-positive and Gram-negative bacteria as well as Candida species. The results demonstrated that most combinations exhibited an indifferent effect, whereas the covalently conjugated PTTIQ-AMP displayed an antagonistic effect, potentially attributed to the aggregation process. Both antimicrobial compounds, PTTIQ and temporin L, were incorporated into poly(lactic acid) electrospun fibers using the supercritical solvent impregnation method. This approach yielded fibers with improved antibacterial performance, as a result of the potent activity exerted by the AMP and the nonleaching nature of the cationic polymer, thereby enhancing long-term effectiveness.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Alcinos , Cátions , Polímeros/farmacologia
2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904481

RESUMO

The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.

3.
Polymers (Basel) ; 15(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987340

RESUMO

In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of the networks. Moreover, the introduction of permanent cationic charges in the network surface could give antimicrobial activity to them. Therefore, the antibacterial behavior and the hemotoxicity were analyzed against Gram-positive and Gram-negative bacteria and red blood cells, respectively.

4.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015598

RESUMO

We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, coupled with a rotatory collector. The obtained fibers were extensively studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXS), employing synchrotron radiation. The incorporation of the PMSs on the PLA fibers did not significantly affect the fiber diameters, whereas the alignment was almost maintained. The crystallinity and thermal properties were also slightly modified with the addition of PMSs, and an increase in the degree of crystallinity and in the glass transition temperature of the blend compared to PLA was observed. Remarkably, the PLA/PMSs fibers were more ductile due to the elastomeric character of PMS, with higher values of elongation at break and tensile strengths, and a smaller Young modulus in comparison with the PLA fibers. These modifications of the properties were more noticeable in the case of the acrylated PMS, which also provided readily available functional groups at the surface for further chemical reactions, such as the Michael addition or crosslinking processes.

5.
Nanomaterials (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889724

RESUMO

Over 367 million tons of plastics are produced annually worldwide, and the growth of plastic pollution has become a global concern [...].

6.
Polymers (Basel) ; 14(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406152

RESUMO

The ability of polymer microgels to rapidly respond to external stimuli is of great interest in sensors, lubricants, and biomedical applications, among others. In most of their uses, microgels are subjected to shear, deformation, and compression forces or a combination of them, leading to variations in their rheological properties. This review article mainly refers to the rheology of microgels, from the hard sphere versus soft particles' model. It clearly describes the scaling theories and fractal structure formation, in particular, the Shih et al. and Wu and Morbidelli models as a tool to determine the interactions among microgel particles and, thus, the viscoelastic properties. Additionally, the most recent advances on the characterization of microgels' single-particle interactions are also described. The review starts with the definition of microgels, and a brief introduction addresses the preparation and applications of microgels and hybrid microgels.

7.
ChemSusChem ; 15(9): e202102750, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315974

RESUMO

In the last two decades, several PET-degrading enzymes from already known microorganisms or metagenomic sources have been discovered to face the growing environmental concern of polyethylene terephthalate (PET) accumulation. However, there is a limited number of high-throughput screening protocols for PET-hydrolyzing activity that avoid the use of surrogate substrates. Herein, a microplate fluorescence screening assay was described. It was based on the coupled activity of ketoreductases (KREDs) and diaphorase to release resorufin in the presence of the products of PET degradation. Six KREDs were identified in a commercial panel that were able to use the PET building block, ethylene glycol, as substrate. The most efficient KRED, KRED61, was combined with the diaphorase from Clostridium kluyveri to monitor the PET degradation reaction catalyzed by the thermostable variant of the cutinase-type polyesterase from Saccharomonospora viridis AHK190. The PET degradation products were measured both fluorimetrically and by HPLC, with excellent correlation between both methods.


Assuntos
Polietilenotereftalatos , Polietilenotereftalatos/química
8.
Polymers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502900

RESUMO

Polylactic acid (PLA) is one of the known synthetic polymers with potential piezoelectric activity but this property is directly related to both the crystalline structure and crystalline degree. Depending on the process conditions, PLA can crystallize in three different forms: α-, ß-, and γ- form, with ß-crystalline phase being the piezoelectric one. To obtain this crystalline structure, transformation of α to ß is required. To do so, the strategies followed so far consisted in annealing or/and stretching of previously obtained PLA in the form of films or fibers, that is, additional post-processing steps. In this work, we are able to obtain PLA fibers with high macromolecular alignment, as demonstrated by SEM, and in the ß polymorph, as detected by X-ray diffraction (XRD) without the requirement of post-processing. For that, PLA fibers were prepared by using an electrospinning coupled to a drum collector. This set up and the optimization of the parameters (voltage flow-rate, and drum collector speed) induced molecular stretching giving rise to uniaxially oriented and highly aligned fibers.

9.
Macromol Biosci ; 21(10): e2100156, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231313

RESUMO

This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.


Assuntos
Poliésteres , Polímeros , Sistemas de Liberação de Medicamentos , Polimerização , Solventes
10.
Polymers (Basel) ; 12(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260473

RESUMO

Several hydrogels based on 2-hydroxyethyl methacrylate and a methacrylic monomer containing a thiazole group in its lateral chain have been prepared by thermal polymerization at 60 °C in water solution varying the chemical composition of the gels. The posterior quaternization of the thiazole groups with methyl iodine has rendered positively charged hydrogels with potential antimicrobial activity. This modification has been structurally characterized by infrared spectroscopy, whereas the thermal stability of all hydrogels has been studied by thermal degradation in inert atmosphere. The swelling behavior in distilled water and the rheology of the different hydrogels have been analyzed as a function of 2-(4-methylthiazol-5-yl)ethyl methacrylate (MTA) monomer content as well as its methylation. Finally, the active character of hydrogels against Gram-positive and Gram-negative bacteria and fungi has been evaluated, revealing excellent antimicrobial activity against all tested microorganisms. The methylated hydrogels could be used as potential materials for wound healing or contact lens applications.

11.
Biotechnol Adv ; 43: 107586, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663616

RESUMO

The adhesion and formation of microbial biofilm on material surfaces is a relevant problem in many areas including in medicine and biomaterials engineering. Biofilms are the primary cause of persistent infections associated with biomedical devices and clinical settings due to their tolerance and resistance to antimicrobial treatment. Reducing initial bacterial attachment to surfaces could decrease the formation of biofilms and, consequently, the posterior dispersion stage in which bacteria present within biofilms expand to other regions, spreading the infection. In this context, the use of surface topography to minimize microbial infections and biofilm formation represents an emerging area of research as it tackles this problem without the need to use antibiotics or other chemical agents. Herein, we review recent progress in surface topography-based antimicrobial approaches and provide an overview of the influence of micro- and nano-topography on bacterial surface attachment. We focus primarily on structured polymeric surfaces. The versatility and properties of polymer materials, along with their propensity to standardization at different length scales, make them an excellent option for fabrication of numerous medical devices. This work also provides a brief overview of recent advances in patterning polymers using lithography, direct-write patterning techniques, and instability-induced patterning. The impact of micro-, nano- and hierarchical surface structuration on the antimicrobial response of polymeric surfaces is addressed to offer new insights for the preparation of antimicrobial materials.


Assuntos
Biofilmes , Polímeros , Bactérias , Materiais Biocompatíveis , Propriedades de Superfície
12.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486235

RESUMO

To use shape memory materials based on poly (lactic acid) (PLA) for medical applications is essential to tune their transition temperature (Ttrans) near to the human body temperature. In this study, the combination of lactic acid oligomer (OLA), acting as a plasticizer, together with chitosan-mediated silver nanoparticles (AgCH-NPs) to create PLA matrices is studied to obtain functional shape memory polymers for potential medical applications. PLA/OLA nanocomposites containing different amounts of AgCH-NPs were obtained and profusely characterized relating their structure with their antimicrobial and shape memory performances. Nanocomposites exhibited shape memory responses at the temperature of interest (near physiological one), as well as excellent shape memory responses, shorter recovery times and higher recovery ratios (over 100%) when compared to neat materials. Moreover, antibacterial activity tests confirmed biocidal activity; therefore, these functional polymer nanocomposites with shape memory, degradability and biocidal activity show great potential for soft actuation applications in the medical field.

13.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580474

RESUMO

The preparation of hybrid polymeric systems based on carbon derivatives with a cationic polymer is described. The polymer used is a copolymer of a quaternizable methacrylic monomer with another dopamine-based monomer capable of anchoring to carbon compounds. Graphene oxide and graphene as well as hybrid polymeric systems were widely characterized by infrared, Raman and photoemission X-ray spectroscopies, electron scanning microscopy, zeta potential and thermal degradation. These allowed confirming the attachment of copolymer onto carbonaceous materials. Besides, the antimicrobial activity of hybrid polymeric systems was tested against Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The results showed the antibacterial character of these hybrid systems.

14.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861765

RESUMO

Poly(lactic acid) (PLA) is one of the most commonly employed synthetic biopolymers for facing plastic waste problems. Despite its numerous strengths, its inherent brittleness, low toughness, and thermal stability, as well as a relatively slow crystallization rate represent some limiting properties when packaging is its final intended application. In the present work, silver nanoparticles obtained from a facile and green synthesis method, mediated with chitosan as a reducing and stabilizing agent, have been introduced in the oligomeric lactic acid (OLA) plasticized PLA in order to obtain nanocomposites with enhanced properties to find potential application as antibacterial food packaging materials. In this way, the green character of the matrix and plasticizer was preserved by using an eco-friendly synthesis protocol of the nanofiller. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results proved the modification of the crystalline structure as well as the crystallinity of the pristine matrix when chitosan mediated silver nanoparticles (AgCH-NPs) were present. The final effect over the thermal stability, mechanical properties, degradation under composting conditions, and antimicrobial behavior when AgCH-NPs were added to the neat plasticized PLA matrix was also investigated. The obtained results revealed interesting properties of the final nanocomposites to be applied as materials for the targeted application.

15.
Nanomaterials (Basel) ; 9(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640156

RESUMO

In this work, a detailed rheological study of hybrid poly(acrylamide-co-acrylic acid) P(AAm-co-AAc) aqueous microgel dispersions is performed. Our intention is to understand how the presence of gold nanoparticles, AuNP, embedded within the microgel matrix, affects the viscoelastic properties, the colloidal gel structure formation, and the structure recovery after cessation of the deformation of the aqueous microgel dispersions. Frequency sweep experiments confirmed that hybrid microgel dispersions present a gel-like behavior and that the presence of AuNP content within microgel matrix contributes to the elasticity of the microgel dispersions. Strain sweep test confirmed that hybrid microgels aqueous dispersion also form colloidal gel structures that break upon deformation but that can be recovered when the deformation decreases. The fractal analysis performed to hybrid microgels, by applying Shih et al. and Wu and Morbidelli's scaling theories, evidenced that AuNP significantly affects the colloidal gel structure configuration ending up with the formation of agglomerates or microgel clusters with closer structures in comparison to the reference P(AAm-co-AAc) aqueous microgel dispersions.

16.
Macromol Biosci ; 19(8): e1900127, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31268235

RESUMO

New antibacterial films are designed with the capability to reversibly regulate their killing and repelling functions in response to variations in environmental pH. These systems consist of porous polystyrene surfaces as the main components and a copolymer bearing pH-sensitive thiazole and triazole groups as the minor components. These pH-sensitive groups, located on the surfaces, can be partially protonated at acidic pH levels, increasing the positive charge density of the surfaces and their antibacterial activity. Similarly, their bacterial adhesion and killing efficiencies in response to changes in pH are evaluated by analyzing the bacterial viability of Staphylococcus aureus bacteria on the surfaces under acidic and neutral pH values. It is demonstrated that after only 1 h of incubation with the bacterial suspension in acidic conditions, the surfaces killed the bacteria, while at pH = 7.4, some of the adhered bacteria are removed. Furthermore, the surface topography exerts an important role by intensifying this response.


Assuntos
Antibacterianos/química , Poliestirenos/química , Staphylococcus aureus/efeitos dos fármacos , Tiazóis/química , Triazóis/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Poliestirenos/farmacologia , Porosidade , Staphylococcus aureus/crescimento & desenvolvimento , Eletricidade Estática , Relação Estrutura-Atividade , Propriedades de Superfície
17.
Polymers (Basel) ; 11(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159458

RESUMO

Nano-sized one-dimensional metallo-organic polymers, characterized by the phenomenon of spin transition, are excellent candidates for advanced technological applications such as optical sensors, storage, and information processing devices. However, the main drawback of this type of polymers is their fragile mechanical properties, which hinders its processing and handling, and makes their practical use unfeasible. To overcome this problem, in this work, hybrid thermo-reversible gels are synthesized by combination of a metallo-organic polymer and isotactic polystyrene (iPS) in cis-decaline. A detailed investigation of the thermal and viscoelastic properties of the hybrid gels, in terms of iPS and metallo-organic polymer concentration is performed by means of differential scanning calorimetry and oscillatory rheology, respectively. From the analysis of the thermal properties, three transitions have been determined upon heating: Monotectic transition of the iPS gel, melting of the iPS gel, and melting of the metal-organic polymer gel, which suggest that the gels of the two polymers are formed independently in the hybrid gel, as long as the two polymers are in concentrations above the corresponding critical gelation concentrations. Results regarding viscoelastic properties and morphology confirmed that hybrid gels consisted of an interpenetrated network of polymer gels, formed by iPS and metallo-organic poymer gels growing independently.

18.
Polymers (Basel) ; 11(4)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30960590

RESUMO

The work herein describes the preparation of thermoresponsive microgels with potential antimicrobial properties. Most of the work performed so far regarding microgels with antimicrobial activity, deals with the ability of microgels to carry and release antibiotics or antimicrobial agents (antimicrobial peptides). The originality of this work lies in the possibility of developing intrinsic antimicrobial microgels by copolymerization of the well-known thermoresponsive monomer, N-isopropylacrylamide (NIPAM) with dimethylaminoethyl methacrylate (DMAEMA), a water-soluble monomer, to form microgels via precipitation polymerization (radical polymerization). Due to the presence of a tertiary amine in the DMAEMA comonomer, microgels can be modified by N-alkylation reaction with methyl and butyl iodide. This quaternization confers positive charges to the microgel surfaces and thus the potential antimicrobial activity. The effect of DMAEMA content and its quaternization with both, methyl and butyl iodide is evaluated in terms of thermal and surface charge properties, as well as in the microgel size and viscoelastic behavior. Finally, a preliminary study of the antimicrobial activity against different microorganisms is also performed in terms of minimum inhibitory concentration (MIC). From this study we determined that in contrast with butylated microgels, methylated ones show potential antimicrobial activity and good physical properties besides of maintaining microgel thermo-responsiveness.

19.
Materials (Basel) ; 12(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013649

RESUMO

This special issue "Polymeric Materials: Surfaces, Interfaces and Bioapplications" was proposed to cover all the aspects related to recent innovations on surfaces, interfaces and bioapplications of polymeric materials. The collected articles show the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems and tissue engineering. We hope that readers will be able to enjoy highly relevant topics that are related to polymers. Therefore, we hope to prove that plastics can be a solution and not a problem.

20.
Materials (Basel) ; 12(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791651

RESUMO

This article concisely reviews the most recent contributions to the development of sustainable bio-based polymers with antimicrobial properties. This is because some of the main problems that humanity faces, nowadays and in the future, are climate change and bacterial multi-resistance. Therefore, scientists are trying to provide solutions to these problems. In an attempt to organize these antimicrobial sustainable materials, we have classified them into the main families; i.e., polysaccharides, proteins/polypeptides, polyesters, and polyurethanes. The review then summarizes the most recent antimicrobial aspects of these sustainable materials with antimicrobial performance considering their main potential applications in the biomedical field and in the food industry. Furthermore, their use in other fields, such as water purification and coating technology, is also described. Finally, some concluding remarks will point out the promise of this theme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...