Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
NPJ Digit Med ; 7(1): 76, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509224

RESUMO

Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and access to existing data is often hindered by privacy and regulatory concerns. Synthetic data generation holds the promise of effectively bypassing these boundaries allowing for simplified data accessibility and the prospect of synthetic control cohorts. We employed two different methodologies of generative artificial intelligence - CTAB-GAN+ and normalizing flows (NFlow) - to synthesize patient data derived from 1606 patients with acute myeloid leukemia, a heterogeneous hematological malignancy, that were treated within four multicenter clinical trials. Both generative models accurately captured distributions of demographic, laboratory, molecular and cytogenetic variables, as well as patient outcomes yielding high performance scores regarding fidelity and usability of both synthetic cohorts (n = 1606 each). Survival analysis demonstrated close resemblance of survival curves between original and synthetic cohorts. Inter-variable relationships were preserved in univariable outcome analysis enabling explorative analysis in our synthetic data. Additionally, training sample privacy is safeguarded mitigating possible patient re-identification, which we quantified using Hamming distances. We provide not only a proof-of-concept for synthetic data generation in multimodal clinical data for rare diseases, but also full public access to synthetic data sets to foster further research.

2.
NPJ Precis Oncol ; 8(1): 72, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519519

RESUMO

The technological progress in artificial intelligence (AI) has massively accelerated since 2022, with far-reaching implications for oncology and cancer research. Large language models (LLMs) now perform at human-level competency in text processing. Notably, both text and image processing networks are increasingly based on transformer neural networks. This convergence enables the development of multimodal AI models that take diverse types of data as an input simultaneously, marking a qualitative shift from specialized niche models which were prevalent in the 2010s. This editorial summarizes these developments, which are expected to impact precision oncology in the coming years.

3.
Nat Methods ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532015

RESUMO

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

4.
Leukemia ; 37(12): 2395-2403, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833543

RESUMO

Genetic lesions of IKZF1 are frequent events and well-established markers of adverse risk in acute lymphoblastic leukemia. However, their function in the pathophysiology and impact on patient outcome in acute myeloid leukemia (AML) remains elusive. In a multicenter cohort of 1606 newly diagnosed and intensively treated adult AML patients, we found IKZF1 alterations in 45 cases with a mutational hotspot at N159S. AML with mutated IKZF1 was associated with alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and ETV6, while alterations of NPM1, TET2, FLT3-ITD, and normal karyotypes were less frequent. The clinical phenotype of IKZF1-mutated AML was dominated by anemia and thrombocytopenia. In both univariable and multivariable analyses adjusting for age, de novo and secondary AML, and ELN2022 risk categories, we found mutated IKZF1 to be an independent marker of adverse risk regarding complete remission rate, event-free, relapse-free, and overall survival. The deleterious effects of mutated IKZF1 also prevailed in patients who underwent allogeneic hematopoietic stem cell transplantation (n = 519) in both univariable and multivariable models. These dismal outcomes are only partially explained by the hotspot mutation N159S. Our findings suggest a role for IKZF1 mutation status in AML risk modeling.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Nucleofosmina , Mutação , Fatores de Transcrição/genética , Leucemia Mieloide Aguda/patologia , Tirosina Quinase 3 Semelhante a fms/genética , Prognóstico , Fator de Transcrição Ikaros/genética
5.
Commun Med (Lond) ; 3(1): 141, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816837

RESUMO

Large language models (LLMs) are artificial intelligence (AI) tools specifically trained to process and generate text. LLMs attracted substantial public attention after OpenAI's ChatGPT was made publicly available in November 2022. LLMs can often answer questions, summarize, paraphrase and translate text on a level that is nearly indistinguishable from human capabilities. The possibility to actively interact with models like ChatGPT makes LLMs attractive tools in various fields, including medicine. While these models have the potential to democratize medical knowledge and facilitate access to healthcare, they could equally distribute misinformation and exacerbate scientific misconduct due to a lack of accountability and transparency. In this article, we provide a systematic and comprehensive overview of the potentials and limitations of LLMs in clinical practice, medical research and medical education.

7.
Commun Med (Lond) ; 3(1): 68, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198246

RESUMO

BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS: Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS: Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology.


There are various ways in which clinicians can predict the risk of disease progression in patients with leukemia, helping them to treat the patients accordingly. However, these approaches are usually designed by human experts and might not fully capture the complexity of a patient's disease. Here, with a large cohort of patients with acute myeloid leukemia, we design an unsupervised machine learning model ­ a type of computer model that learns from patterns in data without human input­to separate these patients into subgroups according to risk. We identify four distinct groups which differ with regards to patient genetics, laboratory values, and clinical characteristics. These groups have differences in response to treatment and patient survival, and we validate our findings in another dataset. Our approach might help clinicians to better predict outcomes in patients with leukemia and make decisions on treatment.

8.
Blood Cancer J ; 13(1): 88, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236968

RESUMO

Tandem-duplication mutations of the UBTF gene (UBTF-TDs) coding for the upstream binding transcription factor have recently been described in pediatric patients with acute myeloid leukemia (AML) and were found to be associated with particular genetics (trisomy 8 (+8), FLT3-internal tandem duplications (FLT3-ITD), WT1-mutations) and inferior outcome. Due to limited knowledge on UBTF-TDs in adult AML, we screened 4247 newly diagnosed adult AML and higher-risk myelodysplastic syndrome (MDS) patients using high-resolution fragment analysis. UBTF-TDs were overall rare (n = 52/4247; 1.2%), but significantly enriched in younger patients (median age 41 years) and associated with MDS-related morphology as well as significantly lower hemoglobin and platelet levels. Patients with UBTF-TDs had significantly higher rates of +8 (34% vs. 9%), WT1 (52% vs. 7%) and FLT3-ITD (50% vs. 20.8%) co-mutations, whereas UBTF-TDs were mutually exclusive with several class-defining lesions such as mutant NPM1, in-frame CEBPAbZIP mutations as well as t(8;21). Based on the high-variant allele frequency found and the fact that all relapsed patients analyzed (n = 5) retained the UBTF-TD mutation, UBTF-TDs represent early clonal events and are stable over the disease course. In univariate analysis, UBTF-TDs did not represent a significant factor for overall or relapse-free survival in the entire cohort. However, in patients under 50 years of age, who represent the majority of UBTF-mutant patients, UBTF-TDs were an independent prognostic factor for inferior event-free (EFS), relapse-free (RFS) and overall survival (OS), which was confirmed by multivariable analyses including established risk factors such as age and ELN2022 genetic risk groups (EFS [HR: 2.20; 95% CI 1.52-3.17, p < 0.001], RFS [HR: 1.59; 95% CI 1.02-2.46, p = 0.039] and OS [HR: 1.64; 95% CI 1.08-2.49, p = 0.020]). In summary, UBTF-TDs appear to represent a novel class-defining lesion not only in pediatric AML but also younger adults and are associated with myelodysplasia and inferior outcome in these patients.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Humanos , Criança , Proteínas Nucleares/genética , Nucleofosmina , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Prognóstico , Tirosina Quinase 3 Semelhante a fms/genética
9.
J Cancer Res Clin Oncol ; 149(10): 7997-8006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36920563

RESUMO

BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS: In this article, we provide an expert-based consensus statement by the joint Working Group on "Artificial Intelligence in Hematology and Oncology" by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS: First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION: Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future.


Assuntos
Inteligência Artificial , Hematologia , Humanos , Oncologia , Previsões
10.
Blood Cancer J ; 13(1): 18, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693840

RESUMO

Functional perturbations of the cohesin complex with subsequent changes in chromatin structure and replication are reported in a multitude of cancers including acute myeloid leukemia (AML). Mutations of its STAG2 subunit may predict unfavorable risk as recognized by the 2022 European Leukemia Net recommendations, but the underlying evidence is limited by small sample sizes and conflicting observations regarding clinical outcomes, as well as scarce information on other cohesion complex subunits. We retrospectively analyzed data from a multi-center cohort of 1615 intensively treated AML patients and identified distinct co-mutational patters for mutations of STAG2, which were associated with normal karyotypes (NK) and concomitant mutations in IDH2, RUNX1, BCOR, ASXL1, and SRSF2. Mutated RAD21 was associated with NK, mutated EZH2, KRAS, CBL, and NPM1. Patients harboring mutated STAG2 were older and presented with decreased white blood cell, bone marrow and peripheral blood blast counts. Overall, neither mutated STAG2, RAD21, SMC1A nor SMC3 displayed any significant, independent effect on clinical outcomes defined as complete remission, event-free, relapse-free or overall survival. However, we found almost complete mutual exclusivity of genetic alterations of individual cohesin subunits. This mutual exclusivity may be the basis for therapeutic strategies via synthetic lethality in cohesin mutated AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Proteínas Cromossômicas não Histona/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Estudos Retrospectivos , Coesinas
11.
Haematologica ; 108(3): 690-704, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708137

RESUMO

Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77-0.86 and between 0.63-0.74, respectively in our test set, and between 0.71-0.80 and 0.65-0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Prognóstico , Fator de Processamento U2AF/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Aprendizado de Máquina Supervisionado , Hemoglobinas/genética , Tirosina Quinase 3 Semelhante a fms/genética
12.
Front Oncol ; 12: 960984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912249

RESUMO

In cancer diagnostics, a considerable amount of data is acquired during routine work-up. Recently, machine learning has been used to build classifiers that are tasked with cancer detection and aid in clinical decision-making. Most of these classifiers are based on supervised learning (SL) that needs time- and cost-intensive manual labeling of samples by medical experts for model training. Semi-supervised learning (SSL), however, works with only a fraction of labeled data by including unlabeled samples for information abstraction and thus can utilize the vast discrepancy between available labeled data and overall available data in cancer diagnostics. In this review, we provide a comprehensive overview of essential functionalities and assumptions of SSL and survey key studies with regard to cancer care differentiating between image-based and non-image-based applications. We highlight current state-of-the-art models in histopathology, radiology and radiotherapy, as well as genomics. Further, we discuss potential pitfalls in SSL study design such as discrepancies in data distributions and comparison to baseline SL models, and point out future directions for SSL in oncology. We believe well-designed SSL models to strongly contribute to computer-guided diagnostics in malignant disease by overcoming current hinderances in the form of sparse labeled and abundant unlabeled data.

13.
J Hematol Oncol ; 15(1): 60, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562747

RESUMO

BACKGROUND: Extramedullary manifestations (EM) are rare in acute myeloid leukemia (AML) and their impact on clinical outcomes is controversially discussed. METHODS: We retrospectively analyzed a large multi-center cohort of 1583 newly diagnosed AML patients, of whom 225 (14.21%) had EM. RESULTS: AML patients with EM presented with significantly higher counts of white blood cells (p < 0.0001), peripheral blood blasts (p < 0.0001), bone marrow blasts (p = 0.019), and LDH (p < 0.0001). Regarding molecular genetics, EM AML was associated with mutations of NPM1 (OR: 1.66, p < 0.001), FLT3-ITD (OR: 1.72, p < 0.001) and PTPN11 (OR: 2.46, p < 0.001). With regard to clinical outcomes, EM AML patients were less likely to achieve complete remissions (OR: 0.62, p = 0.004), and had a higher early death rate (OR: 2.23, p = 0.003). Multivariable analysis revealed EM as an independent risk factor for reduced overall survival (hazard ratio [HR]: 1.43, p < 0.001), however, for patients who received allogeneic hematopoietic cell transplantation (HCT) survival did not differ. For patients bearing EM AML, multivariable analysis unveiled mutated TP53 and IKZF1 as independent risk factors for reduced event-free (HR: 4.45, p < 0.001, and HR: 2.05, p = 0.044, respectively) and overall survival (HR: 2.48, p = 0.026, and HR: 2.63, p = 0.008, respectively). CONCLUSION: Our analysis represents one of the largest cohorts of EM AML and establishes key molecular markers linked to EM, providing new evidence that EM is associated with adverse risk in AML and may warrant allogeneic HCT in eligible patients with EM.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Nucleofosmina , Prognóstico , Estudos Retrospectivos , Tirosina Quinase 3 Semelhante a fms/genética
14.
BMC Cancer ; 22(1): 201, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193533

RESUMO

BACKGROUND: Acute promyelocytic leukemia (APL) is considered a hematologic emergency due to high risk of bleeding and fatal hemorrhages being a major cause of death. Despite lower death rates reported from clinical trials, patient registry data suggest an early death rate of 20%, especially for elderly and frail patients. Therefore, reliable diagnosis is required as treatment with differentiation-inducing agents leads to cure in the majority of patients. However, diagnosis commonly relies on cytomorphology and genetic confirmation of the pathognomonic t(15;17). Yet, the latter is more time consuming and in some regions unavailable. METHODS: In recent years, deep learning (DL) has been evaluated for medical image recognition showing outstanding capabilities in analyzing large amounts of image data and provides reliable classification results. We developed a multi-stage DL platform that automatically reads images of bone marrow smears, accurately segments cells, and subsequently predicts APL using image data only. We retrospectively identified 51 APL patients from previous multicenter trials and compared them to 1048 non-APL acute myeloid leukemia (AML) patients and 236 healthy bone marrow donor samples, respectively. RESULTS: Our DL platform segments bone marrow cells with a mean average precision and a mean average recall of both 0.97. Further, it achieves high accuracy in detecting APL by distinguishing between APL and non-APL AML as well as APL and healthy donors with an area under the receiver operating characteristic of 0.8575 and 0.9585, respectively, using visual image data only. CONCLUSIONS: Our study underlines not only the feasibility of DL to detect distinct morphologies that accompany a cytogenetic aberration like t(15;17) in APL, but also shows the capability of DL to abstract information from a small medical data set, i. e. 51 APL patients, and infer correct predictions. This demonstrates the suitability of DL to assist in the diagnosis of rare cancer entities. As our DL platform predicts APL from bone marrow smear images alone, this may be used to diagnose APL in regions were molecular or cytogenetic subtyping is not routinely available and raise attention to suspected cases of APL for expert evaluation.


Assuntos
Células da Medula Óssea/patologia , Exame de Medula Óssea/métodos , Aprendizado Profundo , Leucemia Promielocítica Aguda/diagnóstico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Coloração e Rotulagem
15.
Leukemia ; 36(1): 111-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34497326

RESUMO

The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can process medical image data and provides data-driven class predictions. Here, we apply a multi-step DL approach to automatically segment cells from bone marrow images, distinguish between AML samples and healthy controls with an area under the receiver operating characteristic (AUROC) of 0.9699, and predict the mutation status of Nucleophosmin 1 (NPM1)-one of the most common mutations in AML-with an AUROC of 0.92 using only image data from bone marrow smears. Utilizing occlusion sensitivity maps, we observed so far unreported morphologic cell features such as a pattern of condensed chromatin and perinuclear lightening zones in myeloblasts of NPM1-mutated AML and prominent nucleoli in wild-type NPM1 AML enabling the DL model to provide accurate class predictions.


Assuntos
Biomarcadores Tumorais/genética , Medula Óssea/patologia , Aprendizado Profundo , Leucemia Mieloide Aguda/patologia , Mutação , Nucleofosmina/genética , Adulto , Idoso , Medula Óssea/metabolismo , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
16.
Blood Adv ; 6(5): 1394-1405, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34794176

RESUMO

Mutations of the isocitrate dehydrogenase-1 (IDH1) and IDH2 genes are among the most frequent alterations in acute myeloid leukemia (AML) and can be found in ∼20% of patients at diagnosis. Among 4930 patients (median age, 56 years; interquartile range, 45-66) with newly diagnosed, intensively treated AML, we identified IDH1 mutations in 423 (8.6%) and IDH2 mutations in 575 (11.7%). Overall, there were no differences in response rates or survival for patients with mutations in IDH1 or IDH2 compared with patients without mutated IDH1/2. However, distinct clinical and comutational phenotypes of the most common subtypes of IDH1/2 mutations could be associated with differences in outcome. IDH1-R132C was associated with increased age, lower white blood cell (WBC) count, less frequent comutation of NPM1 and FLT3 internal tandem mutation (ITD) as well as with lower rate of complete remission and a trend toward reduced overall survival (OS) compared with other IDH1 mutation variants and wild-type (WT) IDH1/2. In our analysis, IDH2-R172K was associated with significantly lower WBC count, more karyotype abnormalities, and less frequent comutations of NPM1 and/or FLT3-ITD. Among patients within the European LeukemiaNet 2017 intermediate- and adverse-risk groups, relapse-free survival and OS were significantly better for those with IDH2-R172K compared with WT IDH, providing evidence that AML with IDH2-R172K could be a distinct entity with a specific comutation pattern and favorable outcome. In summary, the presented data from a large cohort of patients with IDH1/2 mutated AML indicate novel and clinically relevant findings for the most common IDH mutation subtypes.


Assuntos
Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Nucleofosmina , Fenótipo
17.
Cancers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572853

RESUMO

Precision oncology is grounded in the increasing understanding of genetic and molecular mechanisms that underly malignant disease and offer different treatment pathways for the individual patient. The growing complexity of medical data has led to the implementation of machine learning techniques that are vastly applied for risk assessment and outcome prediction using either supervised or unsupervised learning. Still largely overlooked is reinforcement learning (RL) that addresses sequential tasks by exploring the underlying dynamics of an environment and shaping it by taking actions in order to maximize cumulative rewards over time, thereby achieving optimal long-term outcomes. Recent breakthroughs in RL demonstrated remarkable results in gameplay and autonomous driving, often achieving human-like or even superhuman performance. While this type of machine learning holds the potential to become a helpful decision support tool, it comes with a set of distinctive challenges that need to be addressed to ensure applicability, validity and safety. In this review, we highlight recent advances of RL focusing on studies in oncology and point out current challenges and pitfalls that need to be accounted for in future studies in order to successfully develop RL-based decision support systems for precision oncology.

18.
Blood Adv ; 5(17): 3279-3289, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34459887

RESUMO

The tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) is an important regulator of RAS signaling and frequently affected by mutations in patients with acute myeloid leukemia (AML). Despite the relevance for leukemogenesis and as a potential therapeutic target, the prognostic role is controversial. To investigate the prognostic impact of PTPN11 mutations, we analyzed 1529 adult AML patients using next-generation sequencing. PTPN11 mutations were detected in 106 of 1529 (6.93%) patients (median VAF: 24%) in dominant (36%) and subclonal (64%) configuration. Patients with PTPN11 mutations were associated with concomitant mutations in NPM1 (63%), DNMT3A (37%), and NRAS (21%) and had a higher rate of European LeukemiaNet (ELN) favorable cytogenetics (57.8% vs 39.1%; P < .001) and higher white blood cell counts (P = .007) compared with PTPN11 wild-type patients. In a multivariable analysis, PTPN11 mutations were independently associated with poor overall survival (hazard ratio [HR]: 1.75; P < .001), relapse-free survival (HR: 1.52; P = .013), and a lower rate of complete remission (odds ratio: 0.46; P = .008). Importantly, the deleterious effect of PTPN11 mutations was confined predominantly to the ELN favorable-risk group and patients with subclonal PTPN11 mutations (HR: 2.28; P < .001) but not found with dominant PTPN11 mutations (HR: 1.07; P = .775), presumably because of significant differences within the rate and spectrum of associated comutations. In conclusion, our data suggest an overall poor prognostic impact of PTPN11 mutations in AML, which is significantly modified by the underlying cytogenetics and the clonal context in which they occur.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Nucleofosmina , Fosfoproteínas Fosfatases , Prognóstico , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Indução de Remissão
19.
Cancers (Basel) ; 13(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926021

RESUMO

Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.

20.
Blood Adv ; 4(23): 6077-6085, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33290546

RESUMO

Machine learning (ML) is rapidly emerging in several fields of cancer research. ML algorithms can deal with vast amounts of medical data and provide a better understanding of malignant disease. Its ability to process information from different diagnostic modalities and functions to predict prognosis and suggest therapeutic strategies indicates that ML is a promising tool for the future management of hematologic malignancies; acute myeloid leukemia (AML) is a model disease of various recent studies. An integration of these ML techniques into various applications in AML management can assure fast and accurate diagnosis as well as precise risk stratification and optimal therapy. Nevertheless, these techniques come with various pitfalls and need a strict regulatory framework to ensure safe use of ML. This comprehensive review highlights and discusses recent advances in ML techniques in the management of AML as a model disease of hematologic neoplasms, enabling researchers and clinicians alike to critically evaluate this upcoming, potentially practice-changing technology.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Algoritmos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Aprendizado de Máquina , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...