Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013090

RESUMO

Hyperthermophilic organisms thrive in extreme environments prone to high levels of DNA damage. Growth at high temperature stimulates DNA base hydrolysis resulting in apurinic/apyrimidinic (AP) sites that destabilize the genome. Organisms across all domains have evolved enzymes to recognize and repair AP sites to maintain genome stability. The hyperthermophilic archaeon Thermococcus kodakarensis encodes several enzymes to repair AP site damage including the essential AP endonuclease TK endonuclease IV. Recently, using functional genomic screening, we discovered a new family of AP lyases typified by TK0353. Here, using biochemistry, structural analysis, and genetic deletion, we have characterized the TK0353 structure and function. TK0353 lacks glycosylase activity on a variety of damaged bases and is therefore either a monofunctional AP lyase or may be a glycosylase-lyase on a yet unidentified substrate. The crystal structure of TK0353 revealed a novel fold, which does not resemble other known DNA repair enzymes. The TK0353 gene is not essential for T. kodakarensis viability presumably because of redundant base excision repair enzymes involved in AP site processing. In summary, TK0353 is a novel AP lyase unique to hyperthermophiles that provides redundant repair activity necessary for genome maintenance.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Thermococcus , Desoxirribonuclease IV (Fago T4-Induzido) , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Thermococcus/enzimologia , Thermococcus/genética
2.
Nucleic Acids Res ; 51(22): 12508-12521, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971311

RESUMO

Cellular DNA is subject to damage from a multitude of sources and repair or bypass of sites of damage utilize an array of context or cell cycle dependent systems. The recognition and removal of oxidatively damaged bases is the task of DNA glycosylases from the base excision repair pathway utilizing two structural families that excise base lesions in a wide range of DNA contexts including duplex, single-stranded and bubble structures arising during transcription. The mammalian NEIL2 glycosylase of the Fpg/Nei family excises lesions from each of these DNA contexts favoring the latter two with a preference for oxidized cytosine products and abasic sites. We have determined the first liganded crystal structure of mammalian NEIL2 in complex with an abasic site analog containing DNA duplex at 2.08 Å resolution. Comparison to the unliganded structure revealed a large interdomain conformational shift upon binding the DNA substrate accompanied by local conformational changes in the C-terminal domain zinc finger and N-terminal domain void-filling loop necessary to position the enzyme on the DNA. The detailed biochemical analysis of NEIL2 with an array of oxidized base lesions indicates a significant preference for its lyase activity likely to be paramount when interpreting the biological consequences of variants.


Assuntos
DNA Glicosilases , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Gambás , Animais , Humanos , DNA/química , Dano ao DNA , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Mamíferos/genética , Dedos de Zinco , Conformação Proteica
3.
PLoS Genet ; 17(9): e1009791, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570752

RESUMO

Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. During gemination, spores must degrade their cortex layer, which is a thick, protective layer of modified peptidoglycan. Cortex degradation depends on the presence of the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL), which is specifically recognized by cortex lytic enzymes. In C. difficile, MAL production depends on the CwlD amidase and its binding partner, the GerS lipoprotein. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase_3 family members, we found that CwlD does not bind Zn2+ stably on its own, unlike previously characterized amidase_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to Zn2+, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of Zn2+ co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought.


Assuntos
Amidoidrolases/metabolismo , Clostridioides difficile/fisiologia , Lipoproteínas/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Regulação Alostérica , Amidoidrolases/química , Catálise , Domínio Catalítico , Cromatografia em Gel , Clostridioides difficile/enzimologia , Cristalografia por Raios X , Lactamas/metabolismo , Estrutura Molecular , Ácidos Murâmicos/metabolismo , Ligação Proteica
4.
Structure ; 29(1): 29-42.e4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32846144

RESUMO

Oxidative damage on DNA arising from both endogenous and exogenous sources can result in base modifications that promote errors in replication as well as generating sites of base loss (abasic sites) that present unique challenges to maintaining genomic integrity. These lesions are excised by DNA glycosylases in the first step of the base excision repair pathway. Here we present the first crystal structure of a NEIL2 glycosylase, an enzyme active on cytosine oxidation products and abasic sites. The structure reveals an unusual "open" conformation not seen in NEIL1 or NEIL3 orthologs. NEIL2 is predicted to adopt a "closed" conformation when bound to its substrate. Combined crystallographic and solution-scattering studies show the enzyme to be conformationally dynamic in a manner distinct among the NEIL glycosylases and provide insight into the unique substrate preference of this enzyme. In addition, we characterized three cancer variants of human NEIL2, namely S140N, G230W, and G303R.


Assuntos
DNA Glicosilases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Sítios de Ligação , DNA/química , DNA/metabolismo , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica
5.
PLoS Genet ; 15(7): e1008224, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31276487

RESUMO

The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/farmacologia , Proteínas de Transporte/metabolismo , Clostridioides difficile/fisiologia , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Mutação , Conformação Proteica , Estresse Fisiológico
6.
Proteins ; 87(2): 157-167, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520161

RESUMO

The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Adenosina Trifosfatases/química , Cisteína/química , Proteínas de Ligação a DNA/química , Dissulfetos/química , Domínios Proteicos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dissulfetos/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Ligantes , Lisina/química , Lisina/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Solubilidade , Termodinâmica
7.
Nucleic Acids Res ; 46(20): 10740-10756, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30239932

RESUMO

DNA polymerase ß (pol ß) fills single nucleotide gaps in DNA during base excision repair and non-homologous end-joining. Pol ß must select the correct nucleotide from among a pool of four nucleotides with similar structures and properties in order to maintain genomic stability during DNA repair. Here, we use a combination of X-ray crystallography, fluorescence resonance energy transfer and nuclear magnetic resonance to show that pol ß's ability to access the appropriate conformations both before and upon binding to nucleotide substrates is integral to its fidelity. Importantly, we also demonstrate that the inability of the I260Q mutator variant of pol ß to properly navigate this conformational landscape results in error-prone DNA synthesis. Our work reveals that precatalytic conformational rearrangements themselves are an important underlying mechanism of substrate selection by DNA pol ß.


Assuntos
Códon sem Sentido , DNA Polimerase beta/genética , Replicação do DNA/genética , DNA/química , Instabilidade Genômica/genética , Conformação de Ácido Nucleico , Substituição de Aminoácidos/genética , Catálise , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Reparo do DNA/genética , Transferência Ressonante de Energia de Fluorescência , Ácido Glutâmico/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoleucina/genética , Modelos Moleculares , Nucleotídeos/química , Nucleotídeos/metabolismo , Ligação Proteica , Especificidade por Substrato/genética , Moldes Genéticos
8.
Biochemistry ; 56(41): 5550-5559, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28945359

RESUMO

DNA polymerases synthesize new DNA during DNA replication and repair, and their ability to do so faithfully is essential to maintaining genomic integrity. DNA polymerase ß (Pol ß) functions in base excision repair to fill in single-nucleotide gaps, and variants of Pol ß have been associated with cancer. Specifically, the E288K Pol ß variant has been found in colon tumors and has been shown to display sequence-specific mutator activity. To probe the mechanism that may underlie E288K's loss of fidelity, a fluorescence resonance energy transfer system that utilizes a fluorophore on the fingers domain of Pol ß and a quencher on the DNA substrate was employed. Our results show that E288K utilizes an overall mechanism similar to that of wild type (WT) Pol ß when incorporating correct dNTP. However, when inserting the correct dNTP, E288K exhibits a faster rate of closing of the fingers domain combined with a slower rate of nucleotide release compared to those of WT Pol ß. We also detect enzyme closure upon mixing with the incorrect dNTP for E288K but not WT Pol ß. Taken together, our results suggest that E288K Pol ß incorporates all dNTPs more readily than WT because of an inherent defect that results in rapid isomerization of dNTPs within its active site. Structural modeling implies that this inherent defect is due to interaction of E288K with DNA, resulting in a stable closed enzyme structure.


Assuntos
Neoplasias do Colo/enzimologia , DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , DNA/metabolismo , Modelos Moleculares , Mutação , Substituição de Aminoácidos , Biocatálise , Neoplasias do Colo/genética , DNA/química , DNA Polimerase beta/química , DNA Polimerase beta/genética , Estabilidade Enzimática , Corantes Fluorescentes/química , Humanos , Cinética , Mutagênese Sítio-Dirigida , Naftalenossulfonatos/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , p-Dimetilaminoazobenzeno/análogos & derivados , p-Dimetilaminoazobenzeno/química
9.
Biochemistry ; 56(18): 2363-2371, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28402631

RESUMO

With the formidable growth in the volume of genetic information, it has become essential to identify and characterize mutations in macromolecules not only to predict contributions to disease processes but also to guide the design of therapeutic strategies. While mutations of certain residues have a predictable phenotype based on their chemical nature and known structural position, many types of mutations evade prediction based on current information. Described in this work are the crystal structures of two cancer variants located in the palm domain of DNA polymerase ß (pol ß), S229L and G231D, whose biological phenotype was not readily linked to a predictable structural implication. Structural results demonstrate that the mutations elicit their effect through subtle influences on secondary interactions with a residue neighboring the active site. Residues 229 and 231 are 7.5 and 12.5 Å, respectively, from the nearest active site residue, with a ß-strand between them. A residue on this intervening strand, M236, appears to transmit fine structural perturbations to the catalytic metal-coordinating residue D256, affecting its conformational stability.


Assuntos
DNA Polimerase beta/química , DNA/química , Mutação , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , DNA Polimerase beta/genética , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
10.
J Virol ; 89(8): 4636-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673718

RESUMO

UNLABELLED: DNA polymerases of the Herpesviridae and bacteriophage RB69 belong to the α-like DNA polymerase family. In spite of similarities in structure and function, the RB69 enzyme is relatively resistant to foscarnet, requiring the mutation V478W in helix N to promote the closed conformation of the enzyme to make it susceptible to the antiviral. Here, we generated recombinant herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) mutants harboring the revertant in UL30 (W781V) and UL54 (W780V) DNA polymerases, respectively, to further investigate the impact of this tryptophan on antiviral drug susceptibility and viral replicative capacity. The mutation W781V in HSV-1 induced resistance to foscarnet, acyclovir, and ganciclovir (3-, 14-, and 3-fold increases in the 50% effective concentrations [EC50s], respectively). The recombinant HCMV mutant harboring the W780V mutation was slightly resistant to foscarnet (a 1.9-fold increase in the EC50) and susceptible to ganciclovir. Recombinant HSV-1 and HCMV mutants had altered viral replication kinetics. The apparent inhibition constant values of foscarnet against mutant UL30 and UL54 DNA polymerases were 45- and 4.9-fold higher, respectively, than those against their wild-type counterparts. Structural evaluation of the tryptophan position in the UL54 DNA polymerase suggests that the bulkier phenylalanine (fingers domain) and isoleucine (N-terminal domain) could induce a tendency toward the closed conformation greater than that for UL30 and explains the modest effect of the W780V mutation on foscarnet susceptibility. Our results further suggest a role of the tryptophan in helix N in conferring HCMV and especially HSV-1 susceptibility to foscarnet and the possible contribution of other residues localized at the interface between the fingers and N-terminal domains. IMPORTANCE: DNA polymerases of the Herpesviridae and bacteriophage RB69 belong to the α-like DNA polymerase family. However, the RB69 DNA polymerase is relatively resistant to the broad-spectrum antiviral agent foscarnet. The mutation V478W in helix N of the fingers domain caused the enzyme to adopt a closed conformation and to become susceptible to the antiviral. We generated recombinant herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) mutants harboring the revertant in UL30 (W781V) and UL54 (W780V) DNA polymerases, respectively, to further investigate the impact of this tryptophan on antiviral drug susceptibility. The W781V mutation in HSV-1 induced resistance to foscarnet, whereas the W780V mutation in HCMV slightly decreased drug susceptibility. This study suggests that the different profiles of susceptibility to foscarnet of the HSV-1 and HCMV mutants could be related to subtle conformational changes resulting from the interaction between residues specific to each enzyme that are located at the interface between the fingers and the N-terminal domains.


Assuntos
Citomegalovirus/enzimologia , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Viral/genética , Herpesvirus Humano 1/enzimologia , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Estrutura Secundária de Proteína/genética , Aciclovir , Análise de Variância , Animais , Antivirais/farmacologia , Chlorocebus aethiops , DNA Polimerase Dirigida por DNA/química , Foscarnet , Ganciclovir , Técnicas de Transferência de Genes , Humanos , Cinética , Células Vero
11.
FEBS Lett ; 588(21): 3844-54, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25281266

RESUMO

Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ HAT complex and contains a unique combination of domains typically found in chromatin-associated factors, which include plant homeodomain (PHD) fingers, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. Bromodomains are conserved structural motifs generally known to recognize acetylated histones, and the BRPF1 bromodomain preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We solved the X-ray crystal structures of the BRPF1 bromodomain in complex with the H2AK5ac and H4K12ac histone peptides. Site-directed mutagenesis on residues in the BRPF1 bromodomain-binding pocket was carried out to investigate the contribution of specific amino acids on ligand binding. Our results provide critical insights into the molecular mechanism of ligand binding by the BRPF1 bromodomain, and reveal that ordered water molecules are an essential component driving ligand recognition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilação , Proteínas de Ligação a DNA , Histonas/química , Humanos , Ligantes , Lisina/metabolismo , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , Estrutura Terciária de Proteína
12.
Biochemistry ; 53(13): 2075-7, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24649945

RESUMO

The first high-resolution crystal structure of spiroiminodihydantoin (dSp1) was obtained in the context of the DNA polymerase ß active site and reveals two areas of significance. First, the structure verifies the recently determined S configuration at the spirocyclic carbon. Second, the distortion of the DNA duplex is similar to that of the single-oxidation product 8-oxoguanine. For both oxidized lesions, adaptation of the syn conformation results in similar backbone distortions in the DNA duplex. The resulting conformation positions the dSp1 A-ring as the base-pairing face whereas the B-ring of dSp1 protrudes into the major groove.


Assuntos
DNA Polimerase beta/química , DNA/química , Guanosina/análogos & derivados , Compostos de Espiro/metabolismo , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase beta/metabolismo , Guanosina/química , Guanosina/metabolismo , Humanos , Modelos Moleculares , Compostos de Espiro/química , Moldes Genéticos
13.
J Biol Chem ; 288(48): 34850-60, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24133209

RESUMO

DNA polymerase ß (pol ß) is responsible for gap filling synthesis during repair of damaged DNA as part of the base excision repair pathway. Human pol ß mutations were recently identified in a high percentage (∼30%) of tumors. Characterization of specific cancer variants is particularly useful to further the understanding of the general mechanism of pol ß while providing context to disease contribution. We showed that expression of the carcinoma variant E295K induces cellular transformation. The poor polymerase activity exhibited by the variant was hypothesized to be caused by the destabilization of proper active site assembly by the glutamate to lysine mutation. Here, we show that this variant exhibits an unusual preference for binding dCTP opposite a templating adenine over the cognate dTTP. Biochemical studies indicate that the noncognate competes with the cognate nucleotide for binding to the polymerase active site with the noncognate incorporation a function of higher affinity and not increased activity. In the crystal structure of the variant bound to dA:dCTP, the fingers domain closes around the mismatched base pair. Nucleotide incorporation is hindered because key residues in the polymerase active site are not properly positioned for nucleotidyl transfer. In contrast to the noncognate dCTP, neither the cognate dTTP nor its nonhydrolyzable analog induced fingers closure, as isomorphous difference Fourier maps show that the cognate nucleotides are bound to the open state of the polymerase. Comparison with published structures provides insight into the structural rearrangements within pol ß that occur during the process of nucleotide discrimination.


Assuntos
DNA Polimerase beta/genética , Reparo do DNA/genética , Neoplasias/genética , Nucleotídeos/genética , Relação Estrutura-Atividade , Pareamento Incorreto de Bases/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotídeos/química , Conformação Proteica
14.
DNA Repair (Amst) ; 12(12): 1062-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120312

RESUMO

Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process.


Assuntos
DNA Glicosilases/química , DNA Glicosilases/metabolismo , Mimiviridae/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Dedos de Zinco , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , Sequência Consenso , Cristalografia por Raios X , Dano ao DNA/genética , DNA Glicosilases/genética , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Mimiviridae/genética , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência , Proteínas Virais/genética
15.
PLoS One ; 8(7): e67465, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844012

RESUMO

All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His) guanylyltransferase (Thg1) enzymes catalyze the unusual reverse addition (3' to 5') of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His), a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs) are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His). Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His) maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP). The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.


Assuntos
Bacillus thuringiensis , Nucleotídeos/química , Nucleotidiltransferases/química , RNA de Transferência de Histidina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Bacillus thuringiensis/enzimologia , Bacillus thuringiensis/metabolismo , Sítios de Ligação , Domínio Catalítico , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
16.
PLoS Pathog ; 9(2): e1003165, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23408892

RESUMO

Spores are the major transmissive form of the nosocomial pathogen Clostridium difficile, a leading cause of healthcare-associated diarrhea worldwide. Successful transmission of C. difficile requires that its hardy, resistant spores germinate into vegetative cells in the gastrointestinal tract. A critical step during this process is the degradation of the spore cortex, a thick layer of peptidoglycan surrounding the spore core. In Clostridium sp., cortex degradation depends on the proteolytic activation of the cortex hydrolase, SleC. Previous studies have implicated Csps as being necessary for SleC cleavage during germination; however, their mechanism of action has remained poorly characterized. In this study, we demonstrate that CspB is a subtilisin-like serine protease whose activity is essential for efficient SleC cleavage and C. difficile spore germination. By solving the first crystal structure of a Csp family member, CspB, to 1.6 Å, we identify key structural domains within CspB. In contrast with all previously solved structures of prokaryotic subtilases, the CspB prodomain remains tightly bound to the wildtype subtilase domain and sterically occludes a catalytically competent active site. The structure, combined with biochemical and genetic analyses, reveals that Csp proteases contain a unique jellyroll domain insertion critical for stabilizing the protease in vitro and in C. difficile. Collectively, our study provides the first molecular insight into CspB activity and function. These studies may inform the development of inhibitors that can prevent clostridial spore germination and thus disease transmission.


Assuntos
Clostridioides difficile/química , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Clostridium perfringens/química , Clostridium perfringens/fisiologia , Serina Proteases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Humanos , Modelos Moleculares , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Serina Proteases/química , Serina Proteases/genética , Esporos Bacterianos/enzimologia , Esporos Bacterianos/fisiologia , Subtilisina/química , Subtilisina/genética , Subtilisina/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(32): 13089-94, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788477

RESUMO

Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-Å resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of Fe(N)hTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergo pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same α-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.


Assuntos
Endossomos/metabolismo , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Receptores da Transferrina/química , Transferrina/química
18.
Proc Natl Acad Sci U S A ; 107(47): 20305-10, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059936

RESUMO

All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA(His) guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-Å crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.


Assuntos
Guanosina/metabolismo , Modelos Moleculares , Nucleotidiltransferases/química , RNA de Transferência de Histidina/metabolismo , DNA Polimerase Dirigida por RNA/química , Cristalografia , Evolução Molecular , Humanos , Estrutura Molecular , Nucleotidiltransferases/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo
19.
Protein Sci ; 19(9): 1616-26, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20572014

RESUMO

The original signature of the transferrin (TF) family of proteins was the ability to bind ferric iron with high affinity in the cleft of each of two homologous lobes. However, in recent years, new family members that do not bind iron have been discovered. One new member is the inhibitor of carbonic anhydrase (ICA), which as its name indicates, binds to and strongly inhibits certain isoforms of carbonic anhydrase. Recently, mouse ICA has been expressed as a recombinant protein in a mammalian cell system. Here, we describe the 2.4 Å structure of mouse ICA from a pseudomerohedral twinned crystal. As predicted, the structure is bilobal, comprised of two α-ß domains per lobe typical of the other family members. As with all but insect TFs, the structure includes the unusual reverse γ-turn in each lobe. The structure is consistent with the fact that introduction of two mutations in the N-lobe of murine ICA (mICA) (W124R and S188Y) allowed it to bind iron with high affinity. Unexpectedly, both lobes of the mICA were found in the closed conformation usually associated with presence of iron in the cleft, and making the structure most similar to diferric pig TF. Two new ICA family members (guinea pig and horse) were identified from genomic sequences and used in evolutionary comparisons. Additionally, a comparison of selection pressure (dN/dS) on functional residues reveals some interesting insights into the evolution of the TF family including that the N-lobe of lactoferrin may be in the process of eliminating its iron binding function.


Assuntos
Inibidores da Anidrase Carbônica/química , Transferrina/química , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Ânions/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Cristalografia por Raios X , Ferro/metabolismo , Camundongos , Filogenia , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transferrina/genética , Transferrina/metabolismo
20.
Biochemistry ; 47(48): 12810-21, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18986163

RESUMO

Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to function at acidic pH.


Assuntos
Selênio/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Ácido Ditionitrobenzoico/metabolismo , Drosophila melanogaster/enzimologia , Concentração de Íons de Hidrogênio , Oxirredução , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Análise Espectral , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...