Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Mol Ecol ; 31(7): 2089-2105, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075727

RESUMO

A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyse this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response) in a clonal common-garden network planted in contrasted environments (over 20,500 trees). Most of the analysed traits showed evidence of local adaptation based on Qst -Fst comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0%-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.


Assuntos
Pinaceae , Pinus , Aclimatação , Herança Multifatorial/genética , Fenótipo , Pinus/genética , Árvores
3.
Appl Plant Sci ; 9(6): e11439, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34268018

RESUMO

PREMISE: An informatics approach was used for the construction of an Axiom genotyping array from heterogeneous, high-throughput sequence data to assess the complex genome of loblolly pine (Pinus taeda). METHODS: High-throughput sequence data, sourced from exome capture and whole genome reduced-representation approaches from 2698 trees across five sequence populations, were analyzed with the improved genome assembly and annotation for the loblolly pine. A variant detection, filtering, and probe design pipeline was developed to detect true variants across and within populations. From 8.27 million variants, a total of 642,275 were evaluated and 423,695 of those were screened across a range-wide population. RESULTS: The final informatics and screening approach delivered an Axiom array representing 46,439 high-confidence variants to the forest tree breeding and genetics community. Based on the annotated reference genome, 34% were located in or directly upstream or downstream of genic regions. DISCUSSION: The Pita50K array represents a genome-wide resource developed from sequence data for an economically important conifer, loblolly pine. It uniquely integrates independent projects that assessed trees sampled across the native range. The challenges associated with the large and repetitive genome are addressed in the development of this resource.

4.
Commun Biol ; 4(1): 160, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547394

RESUMO

Extant conifer species may be susceptible to rapid environmental change owing to their long generation times, but could also be resilient due to high levels of standing genetic diversity. Hybridisation between closely related species can increase genetic diversity and generate novel allelic combinations capable of fuelling adaptive evolution. Our study unravelled the genetic architecture of adaptive evolution in a conifer hybrid zone formed between Pinus strobiformis and P. flexilis. Using a multifaceted approach emphasising the spatial and environmental patterns of linkage disequilibrium and ancestry enrichment, we identified recently introgressed and background genetic variants to be driving adaptive evolution along different environmental gradients. Specifically, recently introgressed variants from P. flexilis were favoured along freeze-related environmental gradients, while background variants were favoured along water availability-related gradients. We posit that such mosaics of allelic variants within conifer hybrid zones will confer upon them greater resilience to ongoing and future environmental change and can be a key resource for conservation efforts.


Assuntos
Adaptação Biológica/genética , Introgressão Genética/fisiologia , Especiação Genética , Traqueófitas/genética , Alelos , Arizona , Evolução Biológica , Variação Genética/fisiologia , Geografia , Hibridização Genética/fisiologia , México , Mosaicismo , Pinus/genética , Polimorfismo de Nucleotídeo Único , Traqueófitas/classificação
5.
Front Plant Sci ; 11: 559697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193485

RESUMO

The phenotype of trees is determined by the relationships and interactions among genetic and environmental influences. Understanding the patterns and processes that are responsible for phenotypic variation is facilitated by studying the relationships between phenotype and the environment among many individuals across broad ecological and climatic gradients. We used Pinus strobiformis, which has a wide latitudinal distribution, as a model species to: (a) estimate the relative importance of different environmental factors in predicting these morphological traits and (b) characterize the spatial patterns of standing phenotypic variation of cone and seed traits across the species' range. A large portion of the total variation in morphological characteristics was explained by ecological, climatic and geographical variables (54.7% collectively). The three climate, vegetation and geographical variable groups, each had similar total ability to explain morphological variation (43.4%, 43.8%, 51.5%, respectively), while the topographical variable group had somewhat lower total explanatory power (36.9%). The largest component of explained variance (33.6%) was the four-way interaction of all variable sets, suggesting that there is strong covariation in environmental, climate and geographical variables in their relationship to morphological traits of southwest white pine across its range. The regression results showed that populations in more humid and warmer climates expressed greater cone length and seed size. This may in part facilitate populations of P. strobiformis in warmer and wetter portions of its range growing in dense, shady forest stands, because larger seeds provide greater resources to germinants at the time of germination. Our models provide accurate predictions of morphological traits and important insights regarding the factors that contribute to their expression. Our results indicate that managers should be conservative during reforestation efforts to ensure match between ecotypic variation in seed source populations. However, we also note that given projected large range shift due to climate change, managers will have to balance the match between current ecotypic variation and expected range shift and changes in local adaptive optima under future climate conditions.

6.
Ecol Evol ; 10(11): 4609-4629, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551047

RESUMO

Populus tremuloides is the widest-ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome-wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics of P. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal-Cascades (cluster 1), east-slope Cascades-Sierra Nevadas-Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of the P. tremuloides range, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the "stable-edge hypothesis" that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited "trailing-edge" dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the "inland dispersal hypothesis" predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific-coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable-edge, refugial locations, and postglacial expansion within P. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific-coastal genetic lineage of quaking aspen.

8.
Evol Appl ; 13(1): 195-209, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892952

RESUMO

A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well-developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization-mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio-temporal changes in the central location of a hybrid zone between two recently diverged species of pines: Pinus strobiformis and P. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual-based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.

9.
Mol Ecol Resour ; 20(2): 605-615, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31769930

RESUMO

We implemented multilocus selection in a spatially-explicit, individual-based framework that enables multivariate environmental gradients to drive selection in many loci as a new module for the landscape genetics programs, CDPOP and CDMetaPOP. Our module simulates multilocus selection using a linear additive model, providing a flexible platform to evaluate a wide range of genotype-environment associations. Importantly, the module allows simulation of selection in any number of loci under the influence of any number of environmental variables. We validated the module with individual-based selection simulations under Wright-Fisher assumptions. We then evaluated results for simulations under a simple landscape selection model. Next, we simulated individual-based multilocus selection across a complex selection landscape with three loci linked to three different environmental variables. Finally, we demonstrated how the program can be used to simulate multilocus selection under varying selection strengths across different levels of gene flow in a landscape genetics framework. This new module provides a valuable addition to the study of landscape genetics, allowing for explicit evaluation of the contributions and interactions between gene flow and selection-driven processes across complex, multivariate environmental and landscape conditions.


Assuntos
Loci Gênicos , Genética Populacional , Modelos Genéticos , Simulação por Computador , Fluxo Gênico , Genótipo , Seleção Genética
10.
Mol Ecol ; 28(9): 2206-2223, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30834645

RESUMO

The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large-scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction-site associated DNA sequencing and used these data to discover genome-wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST  = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range-edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non-native species to invade novel environments.


Assuntos
Variação Genética , Espécies Introduzidas , Mariposas/genética , Animais , Teorema de Bayes , Evolução Biológica , Estudo de Associação Genômica Ampla , Heterozigoto , Larva/genética , Desequilíbrio de Ligação , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único , Pupa
11.
Mol Ecol ; 28(9): 2122-2135, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912237

RESUMO

Understanding migratory connectivity is essential for determining the drivers behind population dynamics and for implementing effective conservation strategies for migratory species. Genetic markers provide a means to describe migratory connectivity; however, they can be uninformative for species with weak population genetic structure, which has limited their application. Here, we demonstrated a genomic approach to describing migratory connectivity in the prothonotary warbler, Protonotaria citrea, a Neotropical songbird of conservation concern. Using 26,189 single nucleotide polymorphisms (SNPs), we revealed regional genetic structure between the Mississippi River Valley and the Atlantic Seaboard with overall weak genetic differentiation among populations (FST  = 0.0055; 95% CI: 0.0051-0.0059). Genetic variation had a stronger association with geographic rather than environmental factors, with each explaining 14.5% and 8.2% of genetic variation, respectively. By varying the numbers of genomic markers used in population assignment models with individuals of known provenance, we identified a maximum assignment accuracy (89.7% to site, 94.3% to region) using a subset of 600 highly differentiated SNPs. We then assigned samples from nonbreeding sites to breeding region and found low migratory connectivity. Our results highlight the importance of filtering markers for informative loci in models of population assignment. Quantifying migratory connectivity for weakly structured species will be useful for expanding studies to a wider range of migratory species across taxonomic groups and may contribute to a deeper understanding of the evolution of migratory strategies.


Assuntos
Migração Animal/fisiologia , Genética Populacional , Aves Canoras/fisiologia , Animais , Variação Genética , Louisiana , Modelos Genéticos , North Carolina , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Reprodutibilidade dos Testes , Aves Canoras/genética
12.
Environ Entomol ; 47(6): 1623-1631, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30272116

RESUMO

As global temperatures rise, thermal limits play an increasingly important role in determining the persistence and spread of invasive species. Gypsy moth (Lymantria dispar L. Lepidoptera: Erebidae) in North America provides an ideal system for studying the effect of high temperatures on invasive species performance. Here, we used fluctuating temperature regimes and exposed gypsy moth at specific points in development (first-fourth instar, pupa) to cycles of favorable (22-28°C) or high-temperature treatments (30-36°C, 32-38°C, 34-40°C) for either 2 or 7 d. We measured survival, growth, and prolonged effects of exposure on development time and pupal mass. Survival generally decreased as the experimental temperature treatment and duration of exposure increased for all instars and pupae, with a narrow threshold for lethal effects. In response to increasing temperature and magnified by longer exposure times, growth abruptly declined for third instars and development time increased for pupae. For those surviving the 2-d exposure treatment, development time to pupation increased for all instars, but we did not find consistent effects on final pupal mass. These negative effects of high temperature provide important data on the susceptibility of gypsy moth to heat at different points in development. This work improves our understanding of thermal limits to growth and development in gypsy moth and can aid in determining invasion potential under current and future climates.


Assuntos
Temperatura Alta , Mariposas/crescimento & desenvolvimento , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Mortalidade , Pupa/crescimento & desenvolvimento
13.
Mol Ecol ; 27(5): 1245-1260, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411444

RESUMO

Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries between Pinus strobiformis and Pinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate-associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build-up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.


Assuntos
Hibridização Genética , Pinus/genética , Fluxo Gênico , Frequência do Gene , Modelos Teóricos , Pinus/fisiologia , Isolamento Reprodutivo , Especificidade da Espécie
14.
Mol Ecol ; 26(24): 6857-6870, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29110402

RESUMO

Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genética Populacional , Pinus/genética , Europa (Continente) , Aptidão Genética , Loci Gênicos , Variação Genética , Pinus/classificação , Dinâmica Populacional
15.
Mol Ecol ; 26(12): 3168-3185, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28316116

RESUMO

Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (n = 116 231 SNPs) to describe signatures of fine-scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST  = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine-scale adaptation.


Assuntos
Adaptação Fisiológica/genética , Pinus/genética , Pinus/fisiologia , Água , Meio Ambiente , Frequência do Gene , Lagos , Nevada , Polimorfismo de Nucleotídeo Único , Análise Espacial , Árvores
16.
J Hered ; 108(2): 207-216, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003371

RESUMO

Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Estudos de Associação Genética , Genética Populacional , Genômica , Genótipo , Fenótipo , Adaptação Biológica , Genes de Plantas , Genômica/métodos , Modelos Genéticos , Pinus taeda/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Seleção Genética , Estados Unidos
17.
Genetics ; 204(4): 1613-1626, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27794028

RESUMO

Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome "obesity" in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements, the primary factor determining genome size. Like most North American white pines, the principal pathogen of P. lambertiana is white pine blister rust (Cronartium ribicola J.C. Fischer ex Raben.). Identification of candidate genes for resistance to this pathogen is of great ecological importance. The genome sequence afforded us the opportunity to make substantial progress on locating the major dominant gene for simple resistance hypersensitive response, Cr1 We describe new markers and gene annotation that are both tightly linked to Cr1 in a mapping population, and associated with Cr1 in unrelated sugar pine individuals sampled throughout the species' range, creating a solid foundation for future mapping. This genomic variation and annotated candidate genes characterized in our study of the Cr1 region are resources for future marker-assisted breeding efforts as well as for investigations of fundamental mechanisms of invasive disease and evolutionary response.


Assuntos
Genoma de Planta , Pinus/genética , Basidiomycota/patogenicidade , Elementos de DNA Transponíveis , Variação Genética , Tamanho do Genoma , Pinus/imunologia , Pinus/microbiologia , Imunidade Vegetal/genética
18.
PLoS One ; 11(7): e0158691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27387485

RESUMO

Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation.


Assuntos
Adaptação Fisiológica/genética , Clima , Genética Populacional , Pinus/genética , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Variação Genética , Genótipo , Geografia , Mutação , Razão de Chances , Locos de Características Quantitativas , Seleção Genética
19.
Am J Bot ; 103(1): 33-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26744482

RESUMO

PREMISE OF THE STUDY: The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. METHODS: Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. RESULTS: The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. CONCLUSIONS: Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change.


Assuntos
Clima , Genes de Plantas , Polimorfismo de Nucleotídeo Único , Quercus/genética , Seleção Genética , Adaptação Biológica , California , Mudança Climática
20.
Mol Ecol ; 24(17): 4348-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26184487

RESUMO

Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.


Assuntos
Meio Ambiente , Genética Populacional/métodos , Genômica/métodos , Modelos Genéticos , Adaptação Fisiológica/genética , Alelos , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Modelos Lineares , Modelos Logísticos , Fenótipo , Software , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...