Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(12): 5608-5616, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36383154

RESUMO

Wound dressings have been shifting toward a more active role in the wound-healing process. Hydrated environments with additives to aid in the healing process are currently being explored through the application of hydrocolloid dressings. However, these moist healing environments are also ideal for bacterial growth, leading to the widespread use of antibiotics with concerns of antibiotic resistance and toxicity. To overcome this concern, we present a hydrogel wound dressing consisting of hyaluronic acid (HA) cross-linked with gentamicin. This hydrogel treats bacterial infection locally, lowering the effective dose and reducing the concerns of antibiotic resistance and systemic exposure. Changing the cross-linking density, by using varied amounts of a cross-linker, created gels that provided a sustained release of gentamicin for up to 9 days with a range of adhesive and cohesive properties. Overall, this HA hydrogel could provide an important solution in treating local infection in burns and other dermal injuries.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/uso terapêutico , Ácido Hialurônico/farmacologia , Curativos Hidrocoloides , Antibacterianos/uso terapêutico , Gentamicinas
2.
Biomater Sci ; 9(7): 2467-2479, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33404025

RESUMO

The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials - termed "functional graphenic materials" (FGMs) - have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly-l-lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLLn-G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLLn-Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLLn-G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry.


Assuntos
Aderência Bacteriana , Escherichia coli , Materiais Biocompatíveis/farmacologia , Bactérias Gram-Negativas , Humanos , Propriedades de Superfície
3.
Biomacromolecules ; 21(9): 3878-3886, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32687328

RESUMO

High molecular weight, synthetic block copolypeptides that self-assemble are in high demand for biomedical applications. The current standard method for synthesis of block copolypeptides is the controlled ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydride (NCA) monomers, where block architectures can be created by sequential NCA monomer addition. Recently, researchers have focused on developing reaction conditions and initiation systems that make NCA ROP more convenient, particularly for interdisciplinary labs without designated polypeptide facilities. In an effort to further simplify and increase the convenience of polypeptide synthesis, we developed a one-shot copolymerization strategy that allows access to block copolypeptides by capitalizing on the inherently faster reactivity of NCA monomers, compared to NTA (N-thiocarboxyanhydride) monomers. For the first time, we combine an NCA and NTA monomer in one reaction to kinetically promote block copolypeptide formation, providing a convenient alternative to sequential monomer addition. The controlled nature of this copolymerization technique is supported by a molecular weight that is modulated by the concentration of the initiator and low dispersities. We used this one-shot copolymerization to synthesize p(lysine)-b-p(leucine), a known peptide amphiphile (PA). Our one-shot PAs are antimicrobial and can spontaneously form ordered, micron-scale assemblies. Covalent conjugation of one-shot PAs to a graphenic backbone results in a functional graphenic material (FGM) with a self-assembled morphology, paving the way for creation of sophisticated FGM scaffolds with polypeptide-templated, hierarchical order. Overall, we demonstrate that this novel, one-shot copolymerization strategy produces functional copolypeptides with macroscopic sequence control.


Assuntos
Aminoácidos , Peptídeos , Lisina , Substâncias Macromoleculares , Polimerização
4.
Biomater Sci ; 7(9): 3876-3885, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31309944

RESUMO

Graphene is a valuable material in biomedical implant applications due to its mechanical integrity, long-range order, and conductivity; but graphene must be chemically modified to increase biocompatibility and maximize functionality in the body. Here, we developed a foundational synthetic method for covalently functionalizing a reduced GO with bioactive molecules, focusing on synthetic peptides that have shown osteogenic or neurogenic capability as a prototypical example. X-ray photoelectron spectroscopy provides evidence that the peptide is covalently linked to the graphenic backbone. These peptide-graphene (Pep-G) conjugate materials can be processed into mechanically robust, three-dimensional constructs. Differences in their electrostatic charges allow the Pep-G conjugates to form self-assembled, layer-by-layer coatings. Further, the Pep-G conjugates are cytocompatible and electrically conductive, leading us to investigate their potential as regenerative scaffolds, as conductive surfaces can stimulate bone and nerve regeneration. Notably, PC12 cells grown on an electrically stimulated Pep-G scaffold demonstrated enhanced adhesion and neurite outgrowth compared to the control. The functionalization strategy developed here can be used to conjugate a wide variety of bioactive molecules to graphene oxide to create cell-instructive surfaces for biomedical scaffold materials.


Assuntos
Pesquisa Biomédica , Grafite/farmacologia , Peptídeos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Grafite/síntese química , Grafite/química , Estrutura Molecular , Células PC12 , Peptídeos/síntese química , Peptídeos/química , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...