Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 4: 2351, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23965846

RESUMO

Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators lanthanum aluminate (LaAlO3) and strontium titanate (SrTiO3) distinguish this rich system from conventional 2D electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated, with focus on the role of defects in the SrTiO3, while the LaAlO3 has been assumed perfect. Here we demonstrate, through experiments and first-principle calculations, that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. Although extrinsic defects, including oxygen deficiency, are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides insight for identifying other interfaces where emergent behaviours await discovery.

2.
Nat Mater ; 8(11): 892-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19838186

RESUMO

The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective-ordered states. Here, we demonstrate that cation-site ordering achieved through digital-synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO3)m/(SrMnO3)2m superlattices show Néel temperatures (TN) that are the highest of any La(1-x)Sr(x)MnO3 compound, approximately 70 K greater than compositionally equivalent randomly doped La(1/3)Sr(2/3)MnO3. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Through synchrotron X-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting TN. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher TN values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behaviour in oxides through subtle structural phenomena.

3.
Phys Rev Lett ; 100(25): 257203, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643699

RESUMO

Superlattices of (LaMnO3){2n}/(SrMnO3){n} (1or=3. Measurements of transport, magnetization, and polarized neutron reflectivity reveal that the ferromagnetism is relatively uniform in the metallic state, and is strongly modulated in the insulating state, being high in LaMnO3 and suppressed in SrMnO3. The modulation is consistent with a Mott transition driven by the proximity between the (LaMnO3)/(SrMnO3) interfaces. The insulating state for n>or=3 obeys variable range hopping at low temperatures. We suggest that this is due to states at the Fermi level that emerge at the (LaMnO3)/(SrMnO3) interfaces and are localized by disorder.

4.
Phys Rev Lett ; 100(11): 117208, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517824

RESUMO

Photoinduced magnetization dynamics is investigated in chemically ordered (LaMnO3)2n/(SrMnO3)n superlattices using the time-resolved magneto-optic Kerr effect. A monotonic frequency-field dependence is observed for the n=1 superlattice, indicating a single spin population consistent with a homogeneous hole distribution. In contrast, for n> or =2 superlattices, a large precession frequency is observed at low fields indicating the presence of an exchange torque in the dynamic regime. We attribute the emergence of exchange torque to the coupling between two spin populations-viscous and fast spins.

5.
J Phys Condens Matter ; 19(31): 315210, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21694110

RESUMO

What happens to ferromagnetism at the surfaces and interfaces of manganites? With the competition between charge, spin, and orbital degrees of freedom, it is not surprising that the surface behaviour may be profoundly different to that of the bulk. Using a powerful combination of two surface probes, tunnelling and polarized x-ray interactions, this paper reviews our work on the nature of the electronic and magnetic states at manganite surfaces and interfaces. The general observation is that ferromagnetism is not the lowest energy state at the surface or interface, which results in a suppression or even loss of ferromagnetic order at the surface. Two cases will be discussed ranging from the surface of the quasi-2D bilayer manganite (La(2-2x)Sr(1+2x)Mn(2)O(7)) to the 3D perovskite (La(2/3)Sr(1/3)MnO(3))/SrTiO(3) interface. For the bilayer manganite, which is ferromagnetic and conducting in the bulk, these probes present clear evidence for an intrinsic insulating non-ferromagnetic surface layer atop adjacent subsurface layers that display the full bulk magnetization. This abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer coupling native to these quasi-two-dimensional materials. This is in marked contrast to the situation for the non-layered manganite system (La(2/3)Sr(1/3)MnO(3)/SrTiO(3)), whose magnetization near the interface is less than half the bulk value at low temperatures and decreases with increasing temperature at a faster rate than that for the bulk.

6.
Phys Rev Lett ; 96(10): 107003, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605778

RESUMO

We show that the doping-controlled superconductor-insulator transition (SIT) in a high critical temperature cuprate system (Bi(2)Sr(2-x)La(x)CaCu(2)O(8+delta)) exhibits a fundamentally different behavior than is expected from conventional SIT. At the critical doping, the sheet resistance seems to diverge in the zero-temperature limit. Above the critical doping, the transport is universally scaled by a two-component conductance model. Below, it continuously evolves from weakly to strongly insulating behavior. The two-component conductance model suggests that a collective electronic phase-separation mechanism may be responsible for this unconventional SIT behavior.

7.
Phys Rev Lett ; 90(3): 036802, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12570515

RESUMO

A variety of three-constituent superlattice patterns were made in atomic layer-by-layer films, with patterns breaking inversion symmetry giving effective permanent bias fields ranging up to about 200 kV/cm. Dielectric constants at room temperature were nearly 10(3), with loss tangents under 0.01. Most of the response came from discrete dipoles comprising multiple unit cells, but without any ferroelectric phase transition.

8.
Phys Rev Lett ; 89(8): 087002, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12190493

RESUMO

We have used a scanning tunneling microscope to demonstrate that a single CuO2 plane can form a stable and atomically ordered layer at the surface of Bi(2)Sr(2)CaCu(2)O(8+delta). In contrast to previous studies on high-T(c) surfaces, the CuO2-terminated surface exhibits a strongly suppressed tunneling conductance at low voltages. We consider a number of different explanations for this phenomena and propose that it may be caused by how the orbital symmetry of the CuO2 plane's electronic states affects the tunneling process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...