Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 97(4): 1677-1690, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35388965

RESUMO

Macrophytes are an important part of freshwater ecosystems and they have direct and indirect roles in keeping the water clear and providing structure and habitats for other aquatic organisms. Currently, climate change is posing a major threat to macrophyte communities by altering the many drivers that determine macrophyte abundance and composition. We synthesise current literature to examine the direct effects of climate change (i.e. changes in CO2 , temperature, and precipitation patterns) on aquatic macrophytes in lakes as well as indirect effects via invasive species and nutrient dynamics. The combined effects of climate change are likely to lead to an increased abundance and distribution of emergent and floating species, and a decreased abundance and distribution of submerged macrophytes. In small shallow lakes, these processes are likely to be faster than in deep temperate lakes; with lower light levels, water level fluctuations and increases in temperature, the systems will become dominated by algae. In general, specialized macrophyte species in high-latitude and high-altitude areas will decrease in number while more competitive invasive species are likely to outcompete native species. Given that the majority of endemic species reside in tropical lakes, climate change, together with other anthropogenic pressures, might cause the extinction of a large number of endemic species. Lakes at higher altitudes in tropical areas could therefore potentially be a hotspot for future conservation efforts for protecting endemic macrophyte species. In response to a combination of climate-change induced threats, the macrophyte community might collapse, which will change the status of lakes and may initiate a negative feedback loop that will affect entire lake ecosystems.


Assuntos
Mudança Climática , Ecossistema , Organismos Aquáticos , Espécies Introduzidas , Lagos/química , Água
2.
PLoS One ; 12(5): e0176869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467463

RESUMO

Numerous restoration campaigns focused on re-establishing species-rich floodplain meadows of Central Europe, whose species composition is essentially controlled by regular flooding. Climate change predictions expect strong alterations on the discharge regime of Europe's large rivers with little-known consequences on floodplain meadow plants. In this study, we aim to determine the effects of flooding on seedlings of different ages of four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6, and 8 weeks after seedling germination, respectively. We show that a 2-week-flooding treatment had a negative effect on performance of seedlings younger than 6 weeks. Summer floods with high floodwater temperatures may have especially detrimental effects on seedlings, which is corroborated by previous findings. As expected, the plants from wet floodplain meadow microhabitats coped better with the flooding treatment than those from dryer microhabitats. In conclusion, our results suggest that restoration measures may perform more successfully if seedlings of restored species are older than the critical age of about 6 weeks before a spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of floodplain meadows and should, therefore, be taken into account when timing future restoration campaigns.


Assuntos
Sanguisorba/fisiologia , Veronica/fisiologia , Fatores Etários , Inundações , Germinação/fisiologia , Pradaria , Rios , Sanguisorba/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Estresse Fisiológico/fisiologia , Temperatura , Veronica/crescimento & desenvolvimento
3.
Am J Bot ; 103(12): 2105-2114, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27919923

RESUMO

PREMISE OF THE STUDY: Vegetative reproduction and spread through clonal growth plays an important role in arctic-alpine ecosystems with short cool growing seasons. Local variation in winter snow accumulation leads to discrete habitat types that may provide divergent conditions for sexual and vegetative reproduction. Therefore, we studied variation in clonal structure of a dominant, evergreen, dwarf shrub (Empetrum nigrum s.l. with the two taxa E. nigrum L. s.s. and E. hermaphroditum Hagerup) along a snow cover gradient and compared clonal diversity and spatial genetic structure between habitats. METHODS: We studied 374 individual shoots using 105 polymorphic AFLP markers and analyses based on hierarchical clustering, clonal diversity indices, and small-scale spatial genetic structure with pairwise kinship coefficient. We used two approaches to define a threshold of genotypic distance between two samples that are considered the same clone. Clonality was examined among three habitats (exposed ridges, sheltered depressions, birch forest) differing in snow conditions replicated in four study regions in Norway and Sweden. KEY RESULTS: Clonality of E. hermaphroditum differed between habitats with an increase in clonal diversity with decreasing snow depth. Small-scale spatial genetic structure increased with decreasing clonal diversity and increasing clone size. In three study regions, E. hermaphroditum was the only species, whereas in one region E. nigrum also occurred, largely confined to exposed ridges. CONCLUSIONS: Our results demonstrated that snow cover in conjunction with associated habitat conditions plays an important role for the mode of propagation of the dwarf shrub E. hermaphroditum.


Assuntos
Ericaceae/genética , Variação Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regiões Árticas , Células Clonais , Demografia , Ecossistema , Ericaceae/fisiologia , Genética Populacional , Genótipo , Noruega , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Estações do Ano , Neve , Suécia
4.
Mycorrhiza ; 26(7): 735-45, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27246225

RESUMO

While the arbuscular mycorrhizal (AM) symbiosis is known to be widespread in terrestrial ecosystems, there is growing evidence that aquatic plants also form the symbiosis. It has been suggested that symbiosis with AM fungi may represent an important adaptation for isoëtid plants growing on nutrient-poor sediments in oligotrophic lakes. In this study, we address AM fungal root colonization intensity, richness and community composition (based on small subunit (SSU) ribosomal RNA (rRNA) gene sequencing) in five populations of the isoëtid plant species Lobelia dortmanna inhabiting oligotrophic lakes in Southern Sweden. We found that the roots of L. dortmanna hosted rich AM fungal communities and about 15 % of the detected molecular taxa were previously unrecorded. AM fungal root colonization intensity and taxon richness varied along an environmental gradient, being higher in oligotrophic and lower in mesotrophic lakes. The overall phylogenetic structure of this aquatic fungal community differed from that described in terrestrial systems: The roots of L. dortmanna hosted more Archaeosporaceae and fewer Glomeraceae taxa than would be expected based on global data from terrestrial AM fungal communities.


Assuntos
Fungos/genética , Lobelia/microbiologia , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Ecossistema , Fungos/classificação , Filogenia , RNA Fúngico/genética , RNA Ribossômico/genética , Suécia
5.
PLoS One ; 10(5): e0124140, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950730

RESUMO

BACKGROUND: Floodplain meadows along rivers are semi-natural habitats and depend on regular land use. When used non-intensively, they offer suitable habitats for many plant species including rare ones. Floodplains are hydrologically dynamic ecosystems with both periods of flooding and of dry conditions. In German floodplains, dry periods may increase due to reduced summer precipitation as projected by climate change scenarios. Against this background, the question arises, how the forage quantity and quality of these meadows might change in future. METHODS: We report results of two field trials that investigated effects of experimentally reduced summer precipitation on hay quantity and quality of floodplain meadows at the Rhine River (2011-2012) and at two Elbe tributaries (2009-2011). We measured annual yield, the amount of hay biomass, and contents of crude protein, crude fibre, energy, fructan, nitrogen, phosphorus, and potassium. RESULTS: The annual yield decreased under precipitation reduction at the Rhine River. This was due to reduced productivity in the second cut hay at the Rhine River in which, interestingly, the contents of nitrogen and crude protein increased. The first cut at the Rhine River was unaffected by the treatments. At the Elbe tributaries, the annual yield and the hay quantity and quality of both cuts were only marginally affected by the treatments. CONCLUSION: We conclude that the yield of floodplain meadows may become less reliable in future since the annual yield decreased under precipitation reduction at the Rhine River. However, the first and agriculturally more important cut was almost unaffected by the precipitation reduction, which is probably due to sufficient soil moisture from winter/spring. As long as future water levels of the rivers will not decrease during spring, at least the use of the hay from the first cut of floodplain meadows appears reliable under climate change.


Assuntos
Desenvolvimento Vegetal , Chuva , Estações do Ano , Adaptação Fisiológica , Biomassa , Alemanha , Pradaria , Rios
6.
New Phytol ; 202(2): 431-441, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24387238

RESUMO

Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.


Assuntos
Clima , Aquecimento Global , Dispersão Vegetal , Poaceae/crescimento & desenvolvimento , Solo , Temperatura , Luz , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes , Árvores
7.
Mol Ecol Resour ; 13(4): 642-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23617735

RESUMO

DNA methylation is an important, heritable epigenetic modification in most eukaryotic organisms that is connected with numerous biological processes. To study the impact of natural epigenetic variation in an ecological or evolutionary context, epigenetic studies are increasingly using methylation-sensitive amplification polymorphism (MSAP) for surveys at the population or species level. However, no consensus exists on how to interpret and score the multistate information obtained from the MSAP banding patterns. Here, we review the previously used scoring approaches for population epigenetic studies and develop new alternatives. To assess effects of the different approaches on parameters of epigenetic diversity and differentiation, we applied eight scoring schemes to a case study of three populations of the plant species Viola elatior. For a total number of 168 detected polymorphic MSAP fragments, the number of ultimately scored polymorphic epiloci ranged between 78 and 286 depending on the particular scoring scheme. Both, estimates of epigenetic diversity and differentiation varied strongly between scoring approaches. However, linear regression and PCoA revealed qualitatively similar patterns, suggesting that the scoring approaches are largely consistent. For single-locus analyses of MSAP data, for example the search for loci under selection, we advocate a new scoring approach that separately takes into account different methylation types and thus seems appropriate for drawing more detailed conclusions in ecological or evolutionary contexts. An R script (MSAP_score.r) for scoring and basic data analysis is provided.


Assuntos
Metilação de DNA , Interpretação Estatística de Dados , Epigênese Genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Viola/genética , Viola/metabolismo
8.
PLoS One ; 7(7): e41887, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911863

RESUMO

Since inference concerning the relative effects of propagule pressure, biotic interactions, site conditions and species traits on the invasibility of plant communities is limited, we carried out a field experiment to study the role of these factors for absolute and relative seedling emergence in three resident and three non-resident confamilial herb species on a nutrient-poor temperate pasture. We set up a factorial field experiment with two levels each of the factors litter cover (0 and 400 g m(-2)), gap size (0.01 and 0.1 m(2)) and propagule pressure (5 and 50 seeds) and documented soil temperature, soil water content and relative light availability. Recruitment was recorded in spring and autumn 2010 and in spring 2011 to cover initial seedling emergence, establishment after summer drought and final establishment after the first winter. Litter alleviated temperature and moisture conditions and had positive effects on proportional and absolute seedling emergence during all phases of recruitment. Large gaps presented competition-free space with high light availability but showed higher temperature amplitudes and lower soil moisture. Proportional and absolute seedling recruitment was significantly higher in large than in small gaps. In contrast, propagule pressure facilitated absolute seedling emergence but had no effects on proportional emergence or the chance for successful colonisation. Despite significantly higher initial seedling emergence of resident than non-resident species, seed mass and other species-specific traits may be better predictors for idiosyncratic variation in seedling establishment than status. Our data support the fluctuating resource hypothesis and demonstrate that the reserve effect of seeds may facilitate seedling emergence. The direct comparison of propagule pressure with other environmental factors showed that propagule pressure affects absolute seedling abundance, which may be crucial for species that depend on other individuals for sexual reproduction. However, propagule batch size did not significantly affect the chance for successful colonisation of disturbed plots.


Assuntos
Espécies Introduzidas , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Análise de Variância , Intervalos de Confiança , Ecossistema , Luz , Razão de Chances , Folhas de Planta/efeitos da radiação , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Sementes/efeitos da radiação , Solo , Especificidade da Espécie , Temperatura , Água
9.
Ann Bot ; 110(3): 585-93, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22730022

RESUMO

BACKGROUND AND AIMS: Ongoing and previous range expansions have a strong influence on population genetic structure of plants. In turn, genetic variation in the new range may affect the population dynamics and the expansion process. The annual Ceratocapnos claviculata (Papaveraceae) has expanded its Atlantic European range in recent decades towards the north and east. Patterns of genetic diversity were investigated across the native range to assess current population structure and phylogeographical patterns. A test was then made as to whether genetic diversity is reduced in the neophytic range and an attempt was made to identify source regions of the expansion. METHODS: Samples were taken from 55 populations in the native and 34 populations in the neophytic range (Sweden, north-east Germany). Using amplified fragment length polymorphism markers an analysis was made of genetic variation and population structure (Bayesian statistical modelling) and population differentiation was quantified. Pollen/ovule ratio was analysed as a proxy for the breeding system. KEY RESULTS: Genetic diversity at population level was very low (mean H(e) = 0·004) and two multilocus genotypes dominated large parts of the new range. Population differentiation was strong (F(ST) = 0·812). These results and a low pollen/ovule ratio are consistent with an autogamous breeding system. Genetic variation decreased from the native to the neophytic range. Within the native range, H(e) decreased towards the north-east, whereas population size increased. According to the Bayesian cluster analysis, the putative source regions of the neophytic range are situated in north-west Germany and adjacent regions. CONCLUSIONS: Ceratocapnos claviculata shows a cline of genetic variation due to postglacial recolonization from putative Pleistocene refugia in south-west Europe. Nevertheless, the species has expanded successfully during the past 40 years to southern Sweden and north-east Germany where it occurs as an opportunistic neophyte. Recent expansion was mainly human-mediated by single long-distance diaspore transport and was facilitated by habitat modification.


Assuntos
Papaveraceae/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Biodiversidade , Ecossistema , Genética Populacional , Alemanha , Filogeografia , Polimorfismo Genético , Poliploidia , Dinâmica Populacional , Suécia
10.
Ann Bot ; 108(1): 177-83, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21624960

RESUMO

BACKGROUND AND AIMS: A meta-analysis of global change experiments in arctic tundra sites suggests that plant productivity and the cover of shrubs, grasses and dead plant material (i.e. litter) will increase and the cover of bryophytes will decrease in response to higher air temperatures. However, little is known about which effects these changes in vegetation structure will have on seedling recruitment of species and invasibility of arctic ecosystems. METHODS: A field experiment was done in a bryophyte-dominated, species-rich subarctic heath by manipulating the cover of bryophytes and litter in a factorial design. Three phases of seedling recruitment (seedling emergence, summer seedling survival, first-year recruitment) of the grass Anthoxanthum alpinum and the shrub Betula nana were analysed after they were sown into the experimental plots. KEY RESULTS: Bryophyte and litter removal significantly increased seedling emergence of both species but the effects of manipulations of vegetation structure varied strongly for the later phases of recruitment. Summer survival and first-year recruitment were significantly higher in Anthoxanthum. Although bryophyte removal generally increased summer survival and recruitment, seedlings of Betula showed high mortality in early August on plots where bryophytes had been removed. CONCLUSIONS: Large species-specific variation and significant effects of experimental manipulations on seedling recruitment suggest that changes in vegetation structure as a consequence of global warming will affect the abundance of grasses and shrubs, the species composition and the susceptibility to invasion of subarctic heath vegetation.


Assuntos
Betula/fisiologia , Briófitas/fisiologia , Germinação/fisiologia , Poaceae/fisiologia , Sementes/fisiologia , Adaptação Fisiológica , Regiões Árticas , Betula/crescimento & desenvolvimento , Briófitas/crescimento & desenvolvimento , Ecossistema , Aquecimento Global , Poaceae/crescimento & desenvolvimento , Estações do Ano , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Especificidade da Espécie , Suécia , Temperatura
11.
New Phytol ; 166(2): 525-35, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15819915

RESUMO

Fitness of individual plants and of populations depends on the rates of survival, growth and fecundity. This study tested whether vital rates were differentially affected by biotic interactions and water availability. The effects of manipulations of above-ground competition (through clipping) and water availability (through water addition) on the vital rates of seedlings of three species (Viola elatior Fries, Viola pumila Chaix and Viola stagnina Kit.) were analysed in dry, mesic and wet grasslands. Water addition and grassland type had the largest effects on survival (accounting for 41 and 24% of total variation, respectively) across species. Height growth rate was positively affected by grassland type (19%) and water addition (12%) and varied among species (8%), while leaf accumulation rates and reproduction were affected by grassland type and clipping. The data suggested facilitative effects of the canopy on seedling survival in the dry grassland. This study presents evidence that environmental conditions and biotic interactions may have differential effects on seedling survival, growth and reproduction. The findings highlight the complex interplay between spatial and temporal environmental variation and biotic interactions in structuring plant communities.


Assuntos
Ecossistema , Viola/fisiologia , Água/metabolismo , Reprodução/fisiologia , Solo , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...